
Avaddon ransomware: an in-depth analysis and decryption of infected systems

Javier Yustea,∗, Sergio Pastranab

aUniversidad Rey Juan Carlos, Madrid
bUniversidad Carlos III, Madrid

Abstract

Malware is an emerging and popular threat flourishing in the underground economy.
The commoditization of Malware-as-a-Service (MaaS) allows criminals to obtain financial benefits at a low risk and

with little technical background. One such popular product is ransomware, which is a popular malware traded in the
underground economy.

In ransomware attacks, data from infected systems is held hostage (encrypted) until a fee is paid to the criminals.
This modus operandi disrupts legitimate businesses, which may become unavailable until the data is restored, thus
causing additional financial and reputational losses. A recent blackmailing strategy adopted by criminals is to leak data
online from the infected systems if the ransom is not paid before a given time, threatening businesses to have their data
exposed online. Besides reputational damage, data leakage might produce further economical losses due to fines imposed
by data protection laws, e.g. GDPR in Europe. Thus, research on prevention and recovery measures to mitigate the
impact of such attacks is needed to adapt existing countermeasures to new strains.

In this work, we perform an in-depth analysis of Avaddon, a ransomware offered in the underground economy as an
affiliate program business.

This threat has been linked to various cyberattacks and has infected and leaked data from at least 23 organizations.
Additionally, it also runs Distributed Denial-of-Service (DDoS) attacks against victims that do not pay the ransom. We
first provide an analysis of the criminal business model from the underground economy. Then, we identify and describe
its technical capabilities, and dissect details of their inner structure. We provide empirical evidence of links between this
variant and a previous family, suggesting that the same group was behind the development and, possibly, the operation
of both campaigns. As a result, we provide tools to assist analysis, allowing to decrypt and label encrypted strings
observed in the ransomware binary. Finally, we describe a method to decrypt files encrypted with Avaddon in real
time. We implement and test the decryptor in a tool that can recover the encrypted data from an infected system, thus
mitigating the damage caused by the ransomware. The tool is released open-source so it can be incorporated in existing
Antivirus engines.

Keywords: Avaddon, Ransomware, Malware Analysis, Reverse Engineering, Cybersecurity

1. Introduction

In February, 2018, the USA government estimated that
cybercrime costs raised up to between 57 and 109 billions
of dollars in 2016 [1]. Cybercrime has been growing for
the last decades as it becomes more profitable. The most
common goal for cybercriminals is monetary gain and they
commonly organize to form online criminal enterprises and
businesses [2]. The virtual battlefield where such criminal
activities operate allows miscreants to perpetrate crimes
in countries with different extradition laws than those of
the country where they reside. This strategy frequently
makes cybercrime hard to prosecute, in addition to other
technical characteristics that difficult attribution [3, 4]. In
recent times, the underground economy has developed a

∗Corresponding author
Email address: javier.yuste@urjc.es (Javier Yuste)

myriad of approaches that allow cybercriminals to acquire
high financial profits. With the cybercrime growth and
specialization, many cybercriminals offer their products
in an “as-a-service” model, where the attacker can pur-
chase the service through the internet with little technical
knowledge. These services reduce the entry level for new
criminals and motivate newcomers into the underground
[5, 6].

In 2017, Panda security analyzed around 15m bina-
ries [7]. The most noticeable thing was that, upon re-
viewing the data collected, they realized that 99.1% of the
samples were only seen once, probably due to binary pack-
ing and encryption. Indeed, a common digital commod-
ity offered in underground markets is malware [8]. Con-
cretely, one of the most popular variants offered is ran-
somware [9], where the attacker denies access to the data
of its victims until a ransom is paid (hence the name of
the threat). When these attacks affect companies or public

ar
X

iv
:2

10
2.

04
79

6v
1

 [
cs

.C
R

]
 9

 F
eb

 2
02

1

organizations, they might provoke business interruptions,
thus increasing the economic and social damage [10]. Ran-
somware operators often partner up with other criminal
groups, either in a customer-service relationship (offering
the software for a fixed fee or via a subscription-based ac-
cess to constant updates) or in a profit sharing scheme
(one party is responsible for developing and maintaining
the ransomware while the other distributes it, both sharing
an arranged percentage of the revenues). Previous works
show that criminals can run ransomware campaigns with
little technical knowledge, making use of the available ser-
vices, with an estimated return of investment of between
504% and 12,682% [5].

Due to the profitability and specialization of cyber-
crime, modern ransomware campaigns have improved their
sophistication. First, techniques from well-established cryp-
tography schemes, so-called hybrid cryptosystems, have
been recently adopted in ransomware operations, com-
bining symmetric and asymmetric cryptography. Second,
modern ransomware perpetrators have incorporated an-
other monetizing technique that further pushes the vic-
tims to pay a ransom: data leakage extortion. Apart from
encrypting the files, ransomware operators now steal data
from the infected systems and threaten the victims to leak
it online if no ransom is paid. This extortion scheme was
initiated by a threat actor named TWISTED SPIDER in
the last quarter of 2019 [11], and was quickly followed by
other ransomware groups [12, 13, 14]. In order to face the
ransomware threat, and to be able to recover the hijacked
files, it is important to understand the criminal ecosystem
and also how the malware evolves and operates.

In this work, we study a novel ransomware campaign,
dubbed Avaddon, which was launched on June 2020 in un-
derground forums as a Ransomware-as-a-service (RaaS).
Since then, Avaddon has been linked to various cyberat-
tacks in 2020, and incorporates a recent trend on Ran-
somware which is is to publicly ‘blame and shame’ victims
that do not pay the ransom [15]. At the time of this writ-
ing, more than 574GB of data from 23 companies have
been leaked and exposed online1. In addition, Avaddon
operators have recently started to blackmail victims by
running DDoS attacks. Existing reports described differ-
ent technical features of Avaddon [17, 18, 19, 20]. However,
as far as the authors know, no public decryption procedure
is available to recover files from an infection. We aim at
filling this gap by providing an in-deph analysis of Avaddon
and proposing a decryption routine that can decrypt files
in real time, thus minimizing the impact of such attack.
In particular, we analyze one of the first variants observed
in early June, although the proposed decryption method
is still functional for the latest samples of Avaddon at the
time of this writing. The main contributions of this work

1For ethical and legal reasons, we have not downloaded nor
checked the veracity of the exposed data since otherwise this would
cause additional harm to users, and such analysis is not of public
interest for the community [16]

are the following:

• We analyze the Avaddon business ecosystem and pro-
vide an step-by-step analysis of its technical capa-
bilities, using advanced static and dynamic analy-
sis. This analysis can be generalized to grasp an
overview of how modern ransomware operates, since
their modus operandi is similar. As a result of our
study, we provide a set of indicators of compromise
(IoCs) that may serve security analysts to develop
further tools and countermeasures to detect Avad-
don, such as signatures or heuristics.

• We showcase a typographical error in the list of ser-
vices that Avaddon checks to avoid re-infecting vic-
tims, which is also present in modern variants of an-
other Ransomware family, i.e., MedusaLocker. Ad-
ditionally, we highlight that some similarities on the
code of both families hint that they are operated or
developed by the same group.

• We describe a method to recover the symmetric keys
used for the encryption, thus allowing victims to re-
cover the files from infected systems. Accordingly,
we present and make publicly available a tool which
can help victims to recover from these attacks in real
time. While this tool was designed using the analysis
of the first versions of Avaddon, we have confirmed
that it still works with the most up-to-date versions
of the ransomware, released in mid-January 2021.

The rest of this work is structured as follows. Section 2
describes the Avaddon criminal ecosystem and how it op-
erates and evolves in the underground economy. Next,
Section 3 discusses the results obtained after reverse en-
gineering the sample using static and dynamic analysis
and provides details of the internals of the ransomware.
Section 4 describes the method to recover the session key
used to encrypt the system and describes the remediation
tool to decrypt the infected files. We provide experimental
results in Section 5 by infecting a sandboxed environment
and decrypting the file system with the proposed approach.
Finally, we conclude and discuss the implications and lim-
itations of this paper in Section 6.

2. Background and related work

In this Section, we first provide background informa-
tion about how Ransomware works and existing defensive
mechanisms. Then, we present the criminal ecosystem be-
hind Avaddon, including its evolution in the underground
economy, and how this has been reflected in the wild, i.e.,
leading to real-world cyberattacks.

2.1. The Ransomware threat
Ransomware is a type of malware that interrupts the

business of the victim or denies access to its data until a

2

ransom is paid, by means of data encryption. This type
of malware has direct financial implications and has pro-
moted the growth of cybercrime, where it is employed as
a profitable business model [21].

Before the popularization of cryptocurrencies, such as
Bitcoin, online payment methods were risky for malware
authors. SMS text messages, pre-paid cards or premium
rate telephone numbers could be traced back easier than
Bitcoin [22]. With the use of Bitcoin or other cryptocur-
rencies to ask for ransoms, it became much harder to trace
the payments sent to criminals. Still, the characteristics
of some cryptocurrencies allow for tracking transactions
(although not connecting them to the attacker). For in-
stance, Huang et al. were able to track over $16 million
in likely ransom payments made by 19,750 potential vic-
tims during a two-year period [23]. Thus, criminals have
adopted privacy-preserving cryptocurrencies such as Mon-
ero that hinder tracking [24]. These cryptocurrencies, in
combination with the cybercrime specialization, have pro-
moted the ransomware threats as a profitable business for
cybercriminals [25].

Ransomware detection approaches often leverage clas-
sical malware detection methods adopted for ransomware-
specific behaviors. In this way, ransomware activities can
be split in 8 stages [26]: fingerprint, propagate, communi-
cate, map, encrypt, lock, delete and threaten. Kharaz et
al. focused the detection on common tasks performed by
ransomware, such as changing the desktop wallpaper [27].
Some efforts have also been made to capture cryptogra-
phy keys at runtime in order to facilitate decryption of
infected systems [28]. Following recent trends in malware
detection, some Machine Learning-based approaches have
also been proposed specifically targeting ransomware de-
tection [29, 30, 31].

2.2. The ecosystem of Avaddon
Avaddon2 is a ransomware that was offered as an affil-

iate program on June, 2020 in a Russian underground fo-
rum, only accessible by invitation or after the payment of a
registration fee. Concretely, the operators were looking for
partners for their campaign. Additionally, Avaddon was
promoted on other underground forums afterwards.3 Ac-
tors that become affiliates are equipped with both the ran-
somware binary and an administration panel from where
they can control their infections. Access to the program
is free and constrained only for reputed (and Russian-
speaking) actors. In exchange for this, partners have to
share part of the obtained revenues from the ransomware
to the owners and operators. This share depends on the
amount of infections, starting from 35% and decreasing up
to 15% for larger volumes. Therefore, affiliates, who are

2The name of the ransomware, Avaddon, may be derived from
the Hebrew term Abaddon, the name of an angel of the abyss in the
Bible, mainly associated with the meaning of “destruction” [18].

3Due to ethical reasons, and to avoid promoting the site, we do
not provide the name of the forums.

only responsible for distributing and installing the mal-
ware on infected systems, gain 65% of the revenues gen-
erated by the ransomware, without the need of operating
the payment system [17]. Such distribution often relies on
botnets hired in a Pay-Per-Install scheme [32]. Addition-
ally, partners can purchase installs on RDP servers, which
is another popular product traded in underground econ-
omy [33]. Thus, the supply chain needed to enter in this
business does not require technical knowledge and it opens
the barrier to any criminal entrepreneur [34]. As a restric-
tion in the affiliates program of Avaddon, it is forbidden
to target victims in the Commonwealth of Independent
States (CIS). We describe the mechanism used to achieve
this restriction in Section 3.5.

A few days after their publication on underground fo-
rums (on 2020-06-04 at around 14:00:00 UTC) Avaddon
was observed in the wild. Concretely, it was distributed
via mail in a malspam campaign [19], that consisted in
low-quality phishing emails that attached a malicious file.
These emails hinted that a compromising photo of the vic-
tim had been leaked, inciting the victim to open the file out
of fear. The attached file was a zip-compressed JavaScript
file. This file tried to masquerade as a JPG photo, having
the extension “.jpg” just before the “.js” extension (e.g.,
“IMG123456.jpg.js”). Upon execution, the malicious file
would download and execute the ransomware. Allegedly,
the first wave of this campaign targeted mostly Canada,
concretely various education services [19]. However, their
targets varied later. Indeed, as mentioned before, Avaddon
was launched as a RaaS, which means that the targets are
not chosen by the ransomware developers (apart from the
ban on CIS victims) but by the affiliates. Upon infecting
a system, a ransom note is left to the victim with instruc-
tions on how to pay the ransom. The note would lead the
victim to a Tor hidden service, where payment must be
done in exchange for the decryptor. At the time of this
writing, the payment service is still operative, confirming
that the campaign is ongoing.

Shortly after Avaddon was first seen in the wild, Trend
Micro conducted and released a technical analysis [20].
The report offers an overview of the ransomware capabil-
ities and modus operandi. However, no decryption option
is mentioned (it only indicates how to remove the ran-
somware). Regarding the decryption process upon paying
the ransom, some stories from affected users state that it
is unreliable and recovery is not ensured [35].

Two months after the initial release, on August, 2020,
Avaddon was updated to incorporate a new trending tech-
nique to their features [36]: extortion to victims. Follow-
ing the model from other ransomware campaigns, Avad-
don operators decided to threat victims to exfiltrate their
data, by making it publicly available if they do not pay the
ransom [37, 38]. By the end of January, 2021, Avaddon
has allegedly infected and leaked full dump data from 20
companies (totalling 574.46 GB of data) and is extorting
(i.e., threatening of leaking data) 3 other companies which
have been recently infected. Finally, in January 2021 (con-

3

current to the writing of this paper), Avaddon included a
new technique used for extortion: attacking their victims
with Denial-of-Service Attacks [39]. Therefore, the threat
to victims is now three-fold, i) data is first encrypted in
the infected systems, so it becomes unavailable, ii) data is
leaked publicly if the ransom is not paid, and iii) a DDoS
attacks is performed to disrupt their businesses until the
ransom is paid.

At the time of writing, we are not aware of any public
decrypting tool for Avaddon. Additionally, various reports
and recent complaints from Avaddon victims about their
decryption support [40, 41] show that the campaign is still
operative. In this paper, we fill this gap and release an
open-source tool that automatically detects and decrypts
files, which could be integrated in existing Antivirus solu-
tions.

3. Ransomware analysis

In this section, we provide an analysis of the Avaddon
ransomware, concretely one released as part of their initial
advertising campaign on June 2020. We follow standard
techniques for malware analysis, concretely static and dy-
namic analysis. To perform the aforementioned analysis,
we utilize popular tools for binary analysis (i.e., Binary
Ninja 4, x64dbg 5 and Pestudio 6) and a virtual machine
to run the ransomware safely. We build the virtual envi-
ronment on top of VirtualBox 7 and install Windows 7 x64
in the virtual system.

The analyzed binary (MD5:c9ec0d9ff44f445ce5614
cc87398b38d) is a Portable Executable (PE) file. The
PE format describes the structure of executable programs
in Windows Operating Systems (OS) [42]. PE files are
mainly divided in two important pieces: headers and sec-
tions. While headers contain information about the pro-
gram itself and data to be read by the OS in order to
correctly load and execute the program, sections contain
the actual code and data of the program. Additionally, we
see that its size is 1.1 MB, so it is not a large program. Fi-
nally, we see that the compilation time field of the binary
is set to June, 3, 2020, at 11:47:22 (UTC). Although this
field is prone to be modified by malware authors in order
to confuse analysts, the timestamp is similar to the time of
the first appearances of Avaddon samples [17], which con-
firms that we are indeed analyzing one of the first versions
of Avaddon.

We describe the packing protections of the analyzed
binary in Section 3.1. Next, we show the imported func-
tions and the extracted strings in Sections 3.2 and 3.3, re-
spectively. In Section 3.4, we show the anti-analysis tech-
niques employed by the binary. Then, we show how the

4https://binary.ninja/
5https://x64dbg.com/
6https://www.winitor.com/
7https://www.virtualbox.org/

ransomware authors implemented a protection to not in-
fect Commonwealth of Independent States (CIS) victims
in Section 3.5 and analyze the privilege escalation tech-
niques, step by step, in Section 3.6. The details of the
persistence mechanism are showcased in Section 3.7. Fol-
lowing, interactions with other processes and services are
presented in Section 3.8. Finally, we expose the cryptogra-
phy mechanisms used in the last two sections, concretely
key management (Section 3.9) and file encryption (Section
3.10).

3.1. Packing protections
Looking at some properties of the PE file, we conclude

that the sample is not packed. First, we find that the PE
file contains 4 sections which have almost no differences
in size between disk and memory. This in an indicator of
the PE file not being packed, since the presence of a vir-
tual section (i.e., a section that requests space in memory
but does not occupy bytes in disk) is a common indicator
of packing protections. Then, we find over 200 imported
functions and several meaningful strings, which present
some useful information about the capabilities of the ran-
somware. Often, packing protections attempt to hide im-
ports and strings in order to difficult analysis. Finally,
the entropy levels of the PE file are not high enough to
hint the presence of a packer. The highest entropy level is
reached in the “.text” section, whose entropy value is 6.62.
However, this does not confirm the existence of packed or
encrypted code, which often have values ranging from a
minimum of 6.677 to a maximum of 6.926 [43].

3.2. Imported functions
The Windows OS offers an Application Programming

Interface (API) which abstracts many functionalities from
developers, e.g to interact with files, processes, etc. This
also provides an abstraction layer regarding the underly-
ing hardware. In order to call those functions, programs
need to know their location in memory. This need may be
fulfilled in different ways, but the most common method
consists on importing the required functions prior to exe-
cution. This is done by the OS loader before transferring
control to the program. To do so, the PE file contains an
Import Address Table (IAT) in the headers, which includes
a list of functions to be imported by the OS loader. When
the file is executed, the OS loads the file in memory and
fills the IAT with the addresses of each requested function.
Then, the program is able to call those functions because
it now knows where each of these functions is allocated in
memory. Therefore, the IAT provides useful information
about the capabilities and intentions of the program. The
functions imported by the Avaddon sample analyzed show
common capabilities of ransomware, such as encryption
(e.g., CryptGenKey or CryptEncrypt), persistence (e.g.,
RegCreateKeyW, StartServiceW), anti-analysis (e.g., Is-
DebuggerPresent) or activity control (e.g., DeleteService
or TerminateProcess).

4

3.3. Strings
Looking for strings through a PE file allows analysts to

identify capabilities of the binary, as well as looking at the
IAT. Indeed, some imports will appear when searching for
strings if they are imported by name (external functions
may be imported by name or ordinal [42]). Therefore, we
proceed to extract all readable strings that have more than
4 characters in the whole file. Then, we filter the extracted
strings and exclude those that are not meaningful (bytes
that are part of code may non-intentionally form readable
strings that are not meaningful). In this case, as aforemen-
tioned, we find enough meaningful strings to think that the
PE file is not packed. Many of the strings found were paths
to folders or files (e.g., “C:\Temp”). While we initially can
not know the actual purpose of those files, we hypothesize
that some of them may be used to drop additional pay-
loads or to move the PE file upon infection to a different
location (we confirm this hypothesis in Section 3.7).

Among the strings that are present in the PE file, we
observe two of them that refer to cryptography providers
(i.e., “Microsoft Enhanced Cryptographic Provider v1
.0” and “Microsoft Enhanced RSA and AES Cryptograph
ic Provider”). These strings are normally used to acquire
cryptography contexts using the Windows API, which are
later needed to perform some cryptography operations.
Additionally, some strings indicate that the ransomware
was developed in C++. C++ is an object-oriented lan-
guage. Although this characteristic does not provide any
information about the capabilities of the sample, the par-
ticularities of C++ programs must be taken into account
in the analysis process. We will highlight some C++ prop-
erties that allow us to extract conclusions in the reverse
engineering process, but discussing the differences between
C++ and other languages at assembly level is out of the
scope of this work. For more information, we refer to Sa-
banal et al. [44].

Interestingly, we find many strings that are Base64 en-
coded. However, upon decoding them, no legible string
is recovered. Therefore, we suspect that these strings are
obfuscated by other means (i.e., encoding or encryption)
in order to hide their content. This is a common mecha-
nism in malware samples. In such case, those strings may
be of importance to understand additional capabilities of
the malware that may not be retrieved without further
analysis. We thus confirm that these strings are indeed
encrypted and are only decrypted at runtime on demand,
i.e., when they are required by the program. First, global
variables are created to hold the encrypted strings, mak-
ing them accessible from every function in the binary. In
Algorithm 1, we show one of the functions (0x4012a0 in
this case) that creates a global variable pointing to an en-
crypted string. There, the encrypted string and its size are
pushed onto the stack (lines 1-2). Then, a global variable
is created at 0x4f8a28 with the content of the encrypted
string (lines 3-4). Finally, a destruction function is regis-
tered (lines 5-6). This function will be called when the pro-
cess exits. The global variable is then referenced wherever

this particular string is needed in the program, and each
encrypted string has its own initialization function. These
functions are the constructors of the global variables. We
know that these are global variables in the source code
because:

1. There is one global variable per encrypted string and
one constructor function for each global variable.

2. Each global variable has a predefined address. These
addresses are hardcoded in each constructor func-
tion.

3. After initializing the global variable, a destructor
function is registered to be called upon terminating
the program.

Algorithm 1: One of the functions responsible
for initializing a global variable with the value of
an encrypted string.
1 0x4012a0: push 0x30;
// Size of the encrypted string

2 0x4012a2: push 0x49e180;
// Encrypted string

3 0x4012a7: mov ecx, 0x4f8a28;
// Global variable

4 0x4012ac: call 0x40a390;
// Creates a global variable at ecx

(0x4f8a28 in this case) with the string
stored at the value previously pushed
(0x49e180 in this case)

5 0x4012b1: push 0x4874a0;
// Destructor

6 0x4012b6: call _atexit;
// Register the destructor function to be

called when the process ends
7 0x4012bb: pop ecx;
8 0x4012bc: retn;

Once initialized, the strings are decrypted and used as
needed by referencing the global variables. In Algorithm
2, we show an example of this procedure. In particular,
a string containing some command line arguments is de-
crypted and used to create a process. In this case, the
goal is to delete security backups. First, the decryption
function is called passing the global variable as an argu-
ment (lines 1-3). This function returns a new string with
the decrypted value, which is immediately used to create
the aforementioned process (lines 4-5). The sequence of
instructions described can be summarized in the following
pseudo code:

CommandLine = DecryptString(GlobalVariable);

CreateProcess(CommandLine);

The decryption function is located at address 0x40c780.
First, the received string is decoded from Base64. Then,

5

Algorithm 2: Decryption of a global variable
into a temporary register.
1 0x40d110: mov edx, 0x4f8a28;
// Global variable that contains an

encrypted string
2 0x40d115: lea ecx, [esp+0x8];
// Local variable that will hold the

decrypted string
3 0x40d119: call decrypt_string;
// Decrypts the string at edx (the global

variable) and stores the result in ecx
(the local variable)

4 0x40d11e: push eax;
// eax now contains the decrypted string

(it is equal to [esp+0x8], the local
variable) which, in this case, is a
command line

5 0x40d11f: call create_process;
// Creates a process with the command line

received as argument

as shown in Algorithm 3, each character is decrypted by
substracting 2 units from its value (line 3) and XOR-ing
the result with 67 (line 5). These instructions are executed
once for every character in the string.

Algorithm 3: Characters decryption.
1 0x40c820: mov al, byte [esi];
// Move the current character to al (the

lower 8 bits of eax)
2 0x40c822: mov edx, dword [ebp-0x1c];
3 0x40c825: sub al, 0x2;
// Substract two units from the character

4 0x40c827: mov edi, dword [ebp-0x18];
5 0x40c82a: xor al, 0x43;
// XOR the result with 0x43

6 0x40c82c: mov byte [ebp-0x30], al;
7 0x40c82f: cmp edx, edi;
8 0x40c831: jae 0x40c84d;

Since we know the address in which global variables are
placed, we have automatically re-labeled them in order to
improve the readability of the code for the analyst. To
allow for reproducibility and to assist other analyses on
this and similar malware samples, we publish a script that
automates these tasks using the Binary Ninja tool in our
public repository 8.

3.4. Anti-analysis techniques
Successfully infecting a system critically depends on

not being detected. Thus malware authors often imple-
ment different techniques to evade antivirus systems or

8https://github.com/JavierYuste/AvaddonDecryptor

sandboxes. Additionally, mechanisms are frequently put in
place in order to delay analysts and, therefore, increment
the time needed for building detection tools for the sample
(e.g., signatures). In the case of Avaddon, the binary is not
packed, which is a common obfuscation technique. How-
ever, we observe other anti-analysis techniques, described
next.

String obfuscation. As mentioned in prior sections,
various of the strings are encrypted, which may hide im-
portant functionality. This technique is commonly used to:
i) evade detection, and ii) delay analysts. See Section 3.3
for a detailed description of this obfuscation technique and
the process used to decrypt the strings.

Anti-debugging. We found a call to IsDebuggerPre-
sent at offset 0x42e03d. Debuggers are programs designed
to analyze other programs at runtime (i.e., processes), and
are used by security analysts to dynamically inspect mal-
ware. Hence, malware authors often embed code in their
programs that checks for debuggers and, if detected, ter-
minates the process or changes their behavior. In par-
ticular, IsDebuggerPresent is a function provided by the
Windows API. If a debugger was attached to the program,
this function would return true and the binary would exit.
To circumvent this protection, we consider two options:

1. Hook the call to IsDebuggerPresent so it always re-
turns false. By doing this, we bypass any check done
by the malware, changing the code on the fly, and
the debugger would not be detected by the sample.

2. Change a binary value in the the Process Environ-
ment Block (PEB), a data structure that holds infor-
mation about the process. That structure is built by
the OS when executing the program and is unique
per process. Among other information, it contains a
bit that indicates if a debugger has been attached.
When a call to IsDebuggerPresent is made, it re-
turns the value of that bit. Therefore, changing the
value in the PEB would successfully hide the debug-
ger from that call and from any manual checks (the
PEB may also be walked through manually by pars-
ing its structure).

In order to avoid further anti-debugging mechanisms
that may parse the PEB (i.e., not using IsDebuggerPre-
sent), we decided to implement the second option.

3.5. Language checks
To avoid infecting systems in some countries, it is fre-

quently observed that malware binaries implement tech-
niques to check the country where the infected machine
is located, so as to ensure that citizens from some regions
are not affected. It is common to see that CIS victims
are dodged in many malware samples, as it is the case
for this one. The most popular approach is to check for
the keyboard layouts and the OS language. In this sam-
ple, we found both checks for different layouts and lan-
guages (addresses 0x42e0ec and 0x42e0b6, respectively).

6

https://github.com/JavierYuste/AvaddonDecryptor

In particular, we discovered checks for language locales
(i.e., Russian and Ukrainian) and keyboard layouts (i.e.,
Russian, Sakha, Tatar and Ukrainian). If any of these
keyboard layouts or OS locales is found, the binary exits
without harming the landed system. That is, this sam-
ple of Avaddon ransomware is designed to avoid infecting
Russian and Ukrainian systems. This, together with the
fact that the malware was first advertised in a Russian un-
derground forum, provides strong (though not conclusive)
evidence that the origin of the malware is Russia.

3.6. Privilege escalation
Malware authors often spend great resources in order

to infect systems, e.g. to gain initial access and evade de-
tection by AV software. However, having invested so much
effort in those tasks, their immediate post-infection activi-
ties might fail due to the need for administrator privileges
if the user becomes suspicious after being requested to con-
cede those privileges. Therefore, reducing the number of
clicks needed from the victim is critical. Indeed, malware
actions usually require administrator privileges in the in-
fected system to accomplish some critical tasks (e.g., ac-
quire persistence, infect system files or processes, etc.). In
this particular case, escalating privileges is critical because
the ransomware needs to i) acquire persistence through
registry keys (Section 3.7), ii) stop processes and services
(Section 3.8), and iii) delete backups (Section 3.10).

The process implemented to elevate privileges in Avad-
don is a well known User Account Control (UAC) bypass.
Indeed, there are public open-source implementations [45]
and it is not uncommon to find this technique in different
malware families [46, 47]. Next, we briefly summarize this
process and how it is implemented in Avaddon. First, three
registry keys are added or modified (at offset 0x40ed20).
Concretely, these keys are:

1. HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windo
ws\CurrentVersion\Policies\System EnableLUA
=0 (disables the “administrator in Admin Approval
Mode” user type [48])

2. HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windo
ws\CurrentVersion\Policies\System ConsentPr
omptBehaviorAdmin=0 (this option allows the Con-
sent Admin to perform an operation that requires
elevation without consent or credentials [49])

3. HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Wind
ows\CurrentVersion\Policies\System EnableL
inkedConnections=1 (makes user mapped drives
available to the administrator versions of those users
[50])

The first two registry key values allow the sample to
elevate privileges without alerting the user, and the third
enables the access to volumes of the current user when
administrator privileges are acquired.

Then, the sample checks its privileges (offset 0x41a5c0).
If it has administrator privileges, it continues its execution

without running the rest of the UAC bypass. Otherwise,
administrator privileges are obtained by running the fol-
lowing procedure (implemented at 0x40ef90):

1. First, a class ID (CLSID) is decrypted. This CLSID
was stored in the binary as an encrypted string, as
we described in Section 3.3. The decrypted value
is “{3E5FC7F9-9A51-4367-9063-A120244FBEC7}”,
which corresponds to CMSTPLUA. For the rest of
this section, we refer to it as CLSID_CMSTPLUA.

2. Next, an IID is decrypted in the same way, obtaining
the value “{6EDD6D74-C007-4E75-B76A-E5740995E
24C}”. For the rest of this section, we refer to it as
IID_ICMLuaUtil.

3. Then, a third string is decrypted, which contains the
value “Elevation:Administrator!new:”.

4. Once the three strings have been decrypted, a new
string is built by concatenating “Elevation:Admini
strator!new:” and CLSID_CMSTPLUA.

5. Next, the execution calls the function CoGetObject
in order to obtain a pointer to CMLuaUtil. The pa-
rameters of the call are as follows:

CoGetObject(“Elevation:Administrator!new:
{3E5FC7F9-9A51-4367-9063-A120244FBEC7}”, 0x
24, &IID_ICMLuaUtil, &CMLuaUtil)

At this point, user interaction might be needed to
grant administrator privileges for the program in
some systems. In some cases, this might be ac-
companied by social engineering techniques, e.g. in-
structions accompanying the phishing email where
the malware is attached. In this case, we have not
observed any particular behavior.

6. If the call is successful, CMLuaUtil now points to
a structure that contains the address of a function
named ShellExec (CMLuaUtil−→lpVtbl−→ShellExec).

7. After obtaining the absolute path of the malware PE
file (via a call to GetModuleFileNameW) the binary
executes itself with administrator privileges by call-
ing ShellExec with the following parameters:

ShellExec(CMLuaUtil, “C:\[...]\sample.ex
e”, [...])

3.7. Persistence and infection tracking
In order to survive across reboots, malware samples

must be run automatically on infected systems after the
initial foothold has been obtained [51]. Otherwise, they
would need to infect the system again if further runs are
required. In order to achieve persistence in the system,
there exist many approaches. Usually, malware authors ac-
quire persistence by adding registry keys, creating services
or registering scheduled tasks. By doing so, the malware
sample is automatically run by the OS (e.g., at scheduled
times or at every reboot). Additionally, malware sam-
ples often implement mechanisms to prevent re-infection

7

of already-infected systems, thus to minimize the risks of
detection or to prevent disruption of previous runs.

By looking at the imported functions (see Section 3.2)
we hypothesize that persistence may be acquired via reg-
istry keys or services. Then, using dynamic analysis we
confirm that persistence is obtained by adding two reg-
istry keys. Upon inspecting the code of the binary, we
locate the function responsible for acquiring persistence at
address 0x40cf50. The only purpose of this function is to
add the following registry keys:

• HKU\S-1-5-21-2724635997-1903860598-41043018
68-1000\Software\Microsoft\Windows\CurrentV
ersion\Run\update: "C:\Users\%UserProfile%\
AppData\Roaming\%sample%.exe"

• HKLM\SOFTWARE\Wow6432Node\Microsoft\Windows
\CurrentVersion\Run\update: "C:\Users\%User
Profile%\AppData\Roaming\%sample%.exe"

With those registry keys in the system, the PE file is
executed at each system reboot (notice that a copy of the
sample is dropped at runtime in "C:\Users\%UserProfil
e%\AppData\Roaming\%sample%.exe", where “%sample%”
is the name of the PE file). To avoid re-infecting a system
more than once, a mutex is created with the value {2A0E
9C7B-6BE8-4306-9F73-1057003F605B}. If this mutex is
already present in the system, the binary exits and does
not encrypt files. In addition, the ransomware takes mea-
sures to avoid encrypting already encrypted files, as we
describe in Section 3.10. Thus, having mechanisms to pre-
vent re-infection of a machine might be to avoid reinfecting
victims that have already payed a ransom. Nevertheless,
the fact that the presence of such mutex is checked allows
to prevent Avaddon infections. By creating such mutex in
a healthy system, Avaddon ransomware samples will not
execute, acting as an Avaddon vaccine. However, not ev-
ery sample of Avaddon uses the same mutex, as it may
change among versions.

3.8. Process and service manipulation
In order to avoid being detected or neutralized, some

malware samples try to stop anti-malware solutions. In
order to do so, administrator privileges must be acquired.
However, it is often easier to acquire administrator privi-
leges without being detected than to encrypt the whole file
system without rising awareness. In Section 3.2, we high-
lighted that the PE file imported some functions that may
indicate an attempt to control some anti-malware solutions
by interacting with services and processes. Additionally,
before attempting to encrypt files, it is important to stop
processes that may be locking some files. For instance,
ransomware authors may look to stop database processes
that may be locking database files.

In this case, we find two functions (located at offsets
0x41a8f0 and 0x40c990 of the sample) that try to stop a
list of services and processes, respectively, if found in the

system. As expected, among those lists, we have found
anti-malware solutions (e.g., “DefWatch”) and databases
(e.g., “sqlservr”).

We notice that the name of one of the services is mis-
spelled. Concretely, “vmware-usbarbitator64” is missing
an ‘r’ (and should instead be “vmware-usbarbitrator64”).
This typographical error was found in other ransomware
family, MedusaLockker. This indicates that developers
reuse code from other families [52, 53]. We are unaware on
whether this is due to the same actor developing both fam-
ilies, or due to code reuse from one to another (though we
have found no evidence of the source code of MedusaLocker
being leaked). Indeed, we notice that the Tactics, Tech-
niques and Procedures (TTPs) of Avaddon are very similar
to those of MedusaLocker if we compare our analyses with
the report on MedusaLocker from Carbon Black’s Threat
Analysis Unit [52]. This is an interesting fact regarding the
attribution of this campaign which might require further
investigation if future families share this peculiarity.

3.9. Key generation
One of the most critical parts of a ransomware cam-

paign is the encryption process. The keys used, how they
are imported or generated, how they are exported, the en-
cryption algorithm chosen, etc., are important decisions
for malware developers. An error in this process may
allow analysts to develop measures to recover encrypted
files, completely neutralizing the campaign revenues. In
this case, two keys are used in the encryption process in a
so-called hybrid scheme. One key (the session key) is ran-
domly generated in each execution and used to encrypt
the files in the system. This key is used in a symmet-
ric encryption scheme, AES256. Therefore, the same key
must be used to decrypt the affected files. The second
key is a public one, part of an asymmetric scheme, RSA1.
This key is imported (it is present in the PE file) and used
only to encrypt the previously generated key. Therefore,
the session key can only be decrypted by the malware au-
thors, since the private key of the asymmetric scheme is
only known by them.

The whole process that we described in the previous
paragraph is split in three functions in the PE sample.
These functions, responsible for key management, are lo-
cated at offsets 0x413600, 0x413a60 and 0x413f50 respec-
tively.

Public key import. The function at 0x413600 is responsi-
ble for importing the public key. The import is made by
calling the Windows API function CryptImportKey with
the following parameters:

CryptImportKey(hProv:CSP, pbData: Key to be imp
orted, dwDataLen: Length of the key, hPubKey: 0, d
wFlags: 0, phKey: Handle to the imported key after
the call)

8

The key (which is Base64 encoded) is part of a RSA1
public/private pair. As per the documentation [54], the
parameter hPubKey must be equal to 0 when the key to be
imported is a public key (a PUBLICKEYBLOB object).
This detail indicates that the imported key is actually the
public one of the pair.

Generated key. After importing the public key, a random
key is generated. This randomly generated key (the ses-
sion key) is used to encrypt the files of the system later,
using an AES256 scheme. The function responsible of gen-
erating the session key is the one located at 0x413f50. To
generate it, a function from the Windows API is called,
CryptGenKey, with the following parameters:

CryptGenKey(hProv: CSP, Algid: CALG_AES_256, d
wFlags: CRYPT_EXPORTABLE, phKey: Handle to the gen
erated key after the call)

The parameter Algid indicates that the generated key
is to be used in AES256. Additionally, notice that the flags
passed to the function indicate that the key must be ex-
portable. Once the key has been generated, it is exported
and encrypted using the previously imported RSA1 key.
The result is then included in the ransom note, in order to
allow the ransomware operators to recover the encryption
key and provide a decryption tool to those victims that
decide to pay a ransom.

Keys destruction. Finally, the function located at 0x413f50
is the one responsible for securely destroying the keys.
This function will destroy the public RSA1 key and the
generated AES256 key. The purpose of this function is
to ensure that they do not remain in memory after being
used. However, this function is only called when the pro-
cess exits, which only occurs when the infected system is
shutdown (the ransomware process remains active to also
encrypt new files). Therefore, the session key is never de-
stroyed if the system is not powered off. This is a mistake
from the malware perspective since, as long as the com-
puter remains active, the key is kept in memory and thus
can be retrieved using basic forensics techniques. In Sec-
tion 4, we will take advantage of this detail to describe and
present a tool to recover the symmetric key generated and
decrypt all the affected files.

3.10. File encryption
In Section 3.9, we presented the mechanism used to

generate the key used to encrypt files. Additionally, we
showed that the algorithm used to encrypt files is AES256,
a symmetric encryption scheme. In this Section, we will
describe the process followed to encrypt files in the infected
system.

The first step performed by the ransomware is to delete
backups so the original files cannot be restored by locally
saved security copies. To achieve that goal, the function
at 0x41a800 executes the following processes:

• wmic.exe SHADOWCOPY /nointeractive

• wbadmin DELETE SYSTEMSTATEBACKUP

• wbadmin DELETE SYSTEMSTATEBACKUP -deleteOlde
st

• bcdedit.exe /set {default} recoveryenabled No

• bcdedit.exe /set {default} bootstatuspolicy i
gnoreallfailures

• vssadmin.exe Delete Shadows /All /Quiet

In order to successfully execute those processes, admin-
istrator privileges are needed, which were obtained using
the procedure that we described in Section 3.6. Finally,
the contents of the recycle bin are deleted by calling the
Windows API function SHEmptyRecycleBinW.

Next, files are encrypted following a depth-first search
approach. Microsoft SQL and Exchange folders are priori-
tized, being the first ones to be encrypted. Then, the root
path is encrypted (i.e., C:*). Finally, shared folders and
mapped volumes are enumerated and encrypted (e.g., D:
, Y:, or \\VBoxSvr\\shared_folder*). There-
fore, the order in which folders are encrypted, following a
depth-first approach, is the following:

1. C:\\Program Files\\Microsoft\\Exchange Serve
r*

2. C:\\Program Files (x86)\\Microsoft\\Exchange
Server*

3. C:\\ProgramFiles\\Microsoft SQL Server*
4. C:\\Program Files (x86)\\MicrosoftSQLServer\

*
5. C:*
6. Shared folders and mapped volumes

For each file encountered, the process performs three
checks before the actual encryption.

1. Strings from a whitelist. The path is checked
to not contain specific strings (see Appendix 6 for
the list of skipped strings). If the absolute path of
the file contains one of those strings, the file is left
untouched. This check is excluded for the first four
folders searched, those that belong to Microsoft SQL
and Exchange servers. Therefore, this check is ap-
plied only to searches initiated at the root folder (i.e.,
C:*) or shared folders and mapped volumes.

2. File extensions. The extension of the file is checked.
The extensions that are excluded (not encrypted) are
the following: bin, ini, sys, dll, lnk, dat, exe, dr
v, rdp, prf, swp, mdf, mds and sql.

3. Prevent re-encryption. The third test checks if
the file has already been encrypted by Avaddon. To
do so, a signature at the end of the file (that is left
after encrypting a file by the ransomware, as we will

9

describe later in this section) is read. In particu-
lar, the last 24 bytes of the file are read. If the file
has been previously encrypted, it should contain the
hexadecimal values 0x200 and 0x1030307 at offsets
8 and 16 in those 24 bytes.

If none of these checks is positive then the file is en-
crypted. The encryption process is done by the function
located at virtual address 0x413bb0. This function re-
ceives a copy of the AES256 key (see Section 3.9) and the
name of the file to be encrypted. We present a high-level
pseudo code (some function signatures have been simpli-
fied to avoid using pointers) extracted from the analyzed
function in Algorithm 4. First, the size needed for the
buffer to hold the bytes after encryption is calculated (line
1). Then, the file contents are read in chunks of 0x100000
bytes (line 5) and encrypted in blocks of 0x2000 bytes
(lines 8-9). However, although there exists a loop to read
and encrypt the whole file, only the first 0x100000 bytes
are encrypted. This is due to the last call to SetFilePoint-
erEx, which sets the file pointer to the end of the file (line
18). When there are only 0x2000 or less bytes left to be
encrypted (line 13), the last chunk of bytes is encrypted
(lines 14-15) and written to the file (line 16). Notice that
the parameter Final (line 15) in the call to the encryption
routine is always set to False. This parameter should be
True if the block to encrypt is the last block of the file.
We will need to take this detail into account in Section 4.
Finally, 512 unused bytes and the signature are written at
the end of the file to mark it as encrypted (lines 20-22)

Therefore, the process is summarized as:

1. Calculate the size of the buffer needed to hold an
encrypted block of 0x2000 (8192) bytes.

2. Obtain the size of the file.
3. Encrypt the first 0x100000 bytes of the file in blocks

of 0x2000 (8192) bytes.
4. Write the victim ID (512 bytes) and the signature

(24 bytes) at the end of the file.

Here, we show an example of a signature written at the
end of an encrypted file and highlight its different fields:

4E 4D 00 00 00 00 00 00 00 02 00 00 01 00 00 00
07 03 03 01 01 01 E2 02

First, in orange, the original length of the file is written
(0x4e4d or 20045 bytes in this case). Then, a hard-coded
magic number is written at offset 16 (cian). This value is
checked prior to encrypting a file, as we discussed earlier
in this section.

4. Decryption of infected systems

In Section 3.9, we described the functions responsi-
ble for importing, generating and destroying the crypto-
graphic keys needed by the ransomware. As we pointed

Algorithm 4: Function responsible for encrypt-
ing files.
Input: File, file to be encrypted

Key, a duplicate of the AES256 key

1 buffer_size ← CryptEncrypt(hKey: Key, Final:
False, pbData: 0, pdwDataLen: 0x2000);

2 file_size ← GetFileSizeEx(hFile: File);
3 file_pointer ← 0;
4 do
5 bytes_read, number_of_bytes_read ←

ReadFile(hFile: File, offset: file_pointer,
nNumberOfBytesToRead: 0x100000);

6 i ← 0;
7 do
8 bytes_to_encrypt ←

bytes_read[i:i+0x2000] ;
// The file is encrypted in blocks

of 0x2000 bytes
9 encrypted_bytes ← CryptEncrypt(hKey:

Key, Final: False, pbData:
bytes_to_encrypt);

10 WriteFile(hFile: File, lpBuffer:
encrypted_bytes);

11 i = i + 0x2000;
12 while i ≤ number_of_bytes_read - 0x2000 ;
13 if number_of_bytes_read - i < 0x2000 then
14 bytes_to_encrypt ← bytes_read[i:] ;
15 encrypted_bytes ← CryptEncrypt(hKey:

Key, Final: False, pbData:
bytes_to_encrypt);

16 WriteFile(hFile: File, lpBuffer:
encrypted_bytes);

17 end
18 file_pointer ← SetFilePointerEx(hFile: File,

liDistanceToMove: 0, dwMoveMethod:
FILE_END) ;
// This call sets the file pointer to

the end of the file. This is done
to stop processing more bytes from
the file

19 while number_of_bytes_read ≥ 0x100000 &&
file_pointer < file_size;

20 WriteFile(hFile: File, lpBuffer: VictimID);
// The Victim ID is written to the end of

the file
21 signature ← GetSignature();
22 WriteFile(hFile: File, lpBuffer: signature);

// The signature is also written at the
end

10

out, the key used for encrypting the system was randomly
generated. Additionally, it was encrypted using a public
key before being exported. Therefore, we are not able to
know the key that is generated beforehand or to decrypt
it after it has been exported, since we do not have the as-
sociated private key needed. However, we also hinted that
the function responsible for destroying the cryptographic
material was in fact never called if the system was not pow-
ered off. This is due to the ransomware process remaining
in the background in order to encrypt new files or drives as
they are created or connected. Since the keys are not de-
stroyed and the ransomware process does not exit, we are
able to recover the generated key. The only requirement is
the memory of the ransomware process (i.e., a full dump).
If such dump of the process (or the whole system) has been
obtained, we may recover the key. This is of paramount
importance, since users, upon seeing a ransom note, might
be tempted to power off or reboot their systems in order to
reestablish their machines, and would lose the opportunity
of obtaining the key and thus decrypting the files.

In order to recover the key, we leverage the knowledge
acquired during the advanced analysis process (see Sec-
tion 3) to identify the structure that points to the desired
key. When a key is generated by using the Windows cryp-
tography API (i.e., cryptsp.dll and rsaenh.dll) the key is
an object of type HCRYPTKEY, which has the following
structure [55]:
struct HCRYPTKEY
{

void* CPGenKey;
void* CPDeriveKey;
void* CPDestroyKey;
void* CPSetKeyParam;
void* CPGetKeyParam;
void* CPExportKey;
void* CPImportKey;
void* CPEncrypt;
void* CPDecrypt;
void* CPDuplicateKey;
HCRYPTPROV hCryptProv;
magic_s *magic;

};

The first 10 fields of the structure point to functions of
the Windows API. The eleventh field, hCryptProv, points
to the provider of the key and the functions (this provider
must be first acquired before the key is generated via
CryptAcquireContext or a similar function). Finally, the
last field points to another structure. This pointer is XOR-
ed with a constant value, 0xE35A172C. Therefore, after
XOR-ing the pointer with that magic constant, it points
to the following structure:
struct magic_s
{

key_data_s *key_data;
};

which contains a pointer to the following structure:
struct key_data_s
{

void *unknown;
uint32_t alg;
uint32_t flags;
uint32_t key_size;
void* key_bytes;

};

The key_data_s structure contains three fields whose
values are known:

• alg contains the algorithm ID of the algorithm for
which the key has been generated. In this case, the
value of this field is 0x00006610, which corresponds
to AES256 [56].

• flags contains the value of the flags parameter passed
in the call to CryptGenKey at 0x48f024. Therefore,
its value is 0x00000001.

• key_size, as it name hints, contains the size of the
key. In this case, the key is 32 bytes long (0x00000020).

Finally, the fifth field contains a pointer to the actual
key. Since we know the value of 24 of the last 28 bytes that
form the structure (skipping the first field) we can search
for this 28-byte pattern in the memory of the process. We
thus are able to obtain a pointer to the generated key that
was used to encrypt the files and finally the key itself. We
recall that the only requisite is that the system has not
been powered off since it was infected, in order to maintain
the key in memory.

Now that we have the symmetric key generated by the
ransomware, we are able to decrypt the infected files. How-
ever, to do so we need to implement the reverse operation
than the one performed by the ransomware (see Algorithm
4). To decrypt any given file, we first parse the signature
at the end of the file. There, we obtain the original size of
the encrypted file. Then, we truncate the file to eliminate
both the signature and the block of 512 bytes appended at
the end of the file by the ransomware (536 bytes in total,
since the signature is 24 bytes in length). Once we have
the truncated file, we proceed to decrypt the first 0x100000
bytes in blocks of 8192 (0x2000) bytes. Notice that, as we
showed in Algorithm 4, the Final parameter in the Cryp-
tEncrypt calls was never set to True. According to the
documentation, this parameter should be True when the
last block is encrypted. Although we do not know if this
nonstandard behavior is intentional or not, we are forced
to do the same in the decryption routine. Therefore, we
always set the Final parameter to be False in the calls to
CryptDecrypt. Then, we copy the rest of the file as is.
Finally, if the file was smaller than 0x100000 bytes, we
truncate it once again, now to the original size recovered
earlier from the signature appended at the end, to remove
the padding bytes.

11

Obtaining a memory dump of a process can be done by
standard forensic tools. Therefore, we open source the tool
to recover the symmetric key from memory and decrypt
the infected files:
https://github.com/JavierYuste/AvaddonDecryptor.

5. Experimentation

We test our proposal in a virtual environment running
a Windows 7 x64 OS. In particular, we build this virtual
machine on top of a virtualization solution named Virtu-
alBox in a 1.60 GHz Intel Core i5-8250U CPU with 16 GB
RAM computer. From the available hardware, we assign
2 cores and 4 GB of RAM to the aforementioned guest
system.

Then, we execute Avaddon on the virtual machine and
let it encrypt the whole system. When Avaddon has not
utilized more than 0.5% of the CPU time in the last 60
seconds, we understand that it has finished encrypting files
and confirm the infection due to the presence of ransom
notes and encrypted files through the whole file system.

After infecting the virtual machine, we proceed to de-
crypt all the affected files. First, we pause the ransomware
process with Process Explorer, a tool from the SysInter-
nals suite 9. Note that we can freely drop executable files
in the system before stopping Avaddon, since the exe ex-
tension is excluded. Once the process is suspended, we
can safely operate in the infected system. Next, we dump
the memory of the ransomware process with ProcDump,
which is also part of the SysInternals suite. Finally, we ex-
ecute the proposed decryption tool, which we open source.
This tool i) confirms the infection by extracting the sig-
nature appended at the end of encrypted files, ii) obtains
the AES256 symmetric key from the dumped memory of
the ransomware process iii) and decrypts the whole file
system.

We show the results in Table 1. From 209,186 files that
were present in the whole system, we found that 9,135
(4.3%) were encrypted, making a total of 607 MB. Our
proposed tool successfully decrypted all the affected files
in 10 minutes and 35 seconds. Additionally, we have tested
our tool with the most recent version of Avaddon, which
was observed from a wild URL on mid-January 2021, when
this paper was written. We confirm that the decryptor still
works, since we were able to decrypt all the infected files.

We must note some considerations. First, it is impor-
tant to not turn off the computer after infection, since the
proposed approach needs the encryption key to be present
in memory. Otherwise, this would be destroyed and could
only be recovered by means of the official channel pro-
posed by the criminals, i.e. paying the ransom. Second,
the proposed tool needs the original version of at least one
encrypted file to find the correct symmetric key. This,
however, can be easily achieved, e.g. by obtaining known

9https://docs.microsoft.com/en-us/sysinternals/

Files in the system 209,186
Files encrypted by Avaddon 9,135

Total size of files in the system 46.85 GB
Total size of encrypted files 607 MB
Time spent decrypting files 558.54 s

Total time 635.63 s

Table 1: Results of the experimentation in a virtual environment.

files present by default in theWindows OS version installed
in the affected system.

6. Conclusions

Current approaches of cybercrime specialization, in-
cluding new malware techniques, increase the threat of
modern ransomware campaigns. In this work, we have an-
alyzed a new ransomware, Avaddon, operated as a RaaS in
a shared profit scheme, first seen on June 2020. Avaddon
incorporates two techniques aimed at increasing their fi-
nancial revenues which are growing in popularity: i) threat-
ening victims that do not want to pay the ransom fee to
leak personal data from infected systems, and ii) conduct-
ing DDoS attacks against them. Data leakage have af-
fected at least 23 organizations whose information is al-
legedly exposed online. While having proper attribution
is difficult, our analysis suggests that the threat actor be-
hind Avaddon is from a CIS country. Indeed the initial
announcement of the ransomware was made in a Russian
underground forum, and it implements a policy to prevent
infection of CIS-based victims. Moreover, a typographic
error found in one of the processes fingerprinted by Avad-
don suggest that this family is related with a previous ran-
somware, i.e. MedusaLocker, where the same error is also
present. Indeed, the modus operandi of Avaddon, that we
detailed in this work, is similar to that of MedusaLocker
[52] and the list of services to stop is almost identical in
both cases.

By examining a sample obtained from the first cam-
paign of Avaddon and describing its behaviors, we took
a grasp on the general “Cyber Kill Chain” of ransomware
threats (land, escalate privileges, deactivate defenses, ac-
quire persistence, delete backups and encrypt files) and a
detailed analysis of this ransomware in particular. Using
an hybrid scheme, Avaddon attempts to hide the session
key from defenders. However, due to the way in which
cryptography keys are managed in this ransomware, we
have developed a tool to recover the session key from the
memory of the infected systems and decrypt all the af-
fected files. The decryption tool also works with newer
variants of the ransomware. The only requirement for this
method to work is that the victim’s computer is not pow-
ered off after the infection.

Due to novelty of the ransomware, the business model
in terms of an affiliate program, and the ability to extortion
and blackmail victims (by means of exfiltration and DDoS

12

https://github.com/JavierYuste/AvaddonDecryptor
https://docs.microsoft.com/en-us/sysinternals/

attacks), it is likely to expect new variants of Avaddon and
similar ransomware samples improving their mechanisms
and expanding in the future. Thus, we believe that the
analysis and tools provided in this paper can contribute
to guide future analyses of such variants and to improve
existing mitigation mechanisms.

Acknowledgements

This work was supported by the Comunidad de Madrid
(P2018/TCS-4566, co-financed by European Structural Funds
ESF and FEDER).

References

[1] T. C. of Economic Advisers, The Cost of Malicious Cyber Ac-
tivity to the U.S. Economy, https://www.whitehouse.gov/wp-
content/uploads/2018/02/The-Cost-of-Malicious-Cyber-
Activity-to-the-U.S.-Economy.pdf, [Online; accessed 28-
September-2020] (2 2018).

[2] B. Collier, R. Clayton, A. Hutchings, D. Thomas, Cybercrime
is (often) boring: maintaining the infrastructure of cybercrime
economies, 2020, workshop on the Economics of Information
Security, WEIS ; Conference date: 14-12-2020 Through 15-12-
2020.

[3] National Intelligence Officer, A Guide to Cyber Attri-
bution, https://www.dni.gov/files/CTIIC/documents/ODNI_
A_Guide_to_Cyber_Attribution.pdf, [Online; accessed 09-
October-2020] (9 2018).

[4] Infosec, The Attribution Problem in Cyber Attacks,
https://resources.infosecinstitute.com/attribution-
problem-in-cyber-attacks/, [Online; accessed 09-October-
2020] (2 2013).

[5] K. Huang, M. Siegel, S. Madnick, Systematically understanding
the cyber attack business: A survey 51 (4).

[6] S. Pastrana, A. Hutchings, A. Caines, P. Buttery, Character-
izing eve: Analysing cybercrime actors in a large underground
forum, in: International symposium on research in attacks, in-
trusions, and defenses, Springer, 2018, pp. 207–227.

[7] PandaLabs, PandaLabs Reveals its Predictions for Cyber-
security Trends in 2018, https://www.pandasecurity.com/
mediacenter/pandalabs/annual-report-cybersecurity-
predictions-2018/, [Online; accessed 28-September-2020] (11
2017).

[8] R. Van Wegberg, S. Tajalizadehkhoob, K. Soska, U. Akyazi,
C. H. Ganan, B. Klievink, N. Christin, M. Van Eeten, Plug and
prey? measuring the commoditization of cybercrime via online
anonymous markets, in: 27th {USENIX} security symposium
({USENIX} security 18), 2018, pp. 1009–1026.

[9] Auld, Andy, What’s behind the increase in ransomware attacks
this year?, https://www.pwc.co.uk/issues/cyber-security-
services/insights/what-is-behind-ransomware-attacks-
increase.html, [Online; accessed 03-October-2020] (2020).

[10] S. Ghafur, S. Kristensen, K. Honeyford, G. Martin, A. Darzi,
P. Aylin, A retrospective impact analysis of the wannacry cy-
berattack on the nhs, NPJ digital medicine 2 (1) (2019) 1–7.

[11] The CrowdStrike Intel Team, Double Trouble: Ran-
somware with Data Leak Extortion, Part 1, https:
//www.crowdstrike.com/blog/double-trouble-ransomware-
data-leak-extortion-part-1/, [Online; accessed 28-
September-2020] (9 2020).

[12] Panda security, Ransomware has a new trick: pay up or suffer
a data breach, https://www.pandasecurity.com/mediacenter/
security/ransomware-data-breach-blackmail/, [Online; ac-
cessed 28-September-2020] (3 2020).

[13] C. Cimpanu, Conti (Ryuk) joins the ranks of ran-
somware gangs operating data leak sites, https:
//www.zdnet.com/article/conti-ryuk-joins-the-ranks-
of-ransomware-gangs-operating-data-leak-sites/, [Online;
accessed 28-September-2020] (8 2020).

[14] M. J. Schwartz, Ransomware + Exfiltration + Leaks
= Data Breach, https://www.bankinfosecurity.com/blogs/
ransomware-exfiltration-leaks-data-breach-p-2913, [On-
line; accessed 28-September-2020] (7 2020).

[15] Intel471, Ransomware-as-a-service: The pandemic within a
pandemic, https://intel471.com/blog/ransomware-as-a-
service-2020-ryuk-maze-revil-egregor-doppelpaymer/,
[Online; accessed 18-December-2020] (2020).

[16] D. R. Thomas, S. Pastrana, A. Hutchings, R. Clayton, A. R.
Beresford, Ethical issues in research using datasets of illicit ori-
gin, in: Proceedings of the 2017 Internet Measurement Con-
ference, IMC ’17, Association for Computing Machinery, New
York, NY, USA, 2017, p. 445–462. doi:10.1145/3131365.
3131389.
URL https://doi.org/10.1145/3131365.3131389

[17] S. Tripathi, Avaddon Ransomware, https://www.subexsecure.
com/pdf/malware-reports/June-2020/Avaddon_Ransomware.
pdf, [Online; accessed 22-September-2020] (6 2020).

[18] A. Ivanov, Avaddon Ransomware, https://id-ransomware.
blogspot.com/2020/06/avaddon-ransomware.html, [Online;
accessed 14-October-2020] (6 2020).

[19] H. Security, Avaddon: From seeking affiliates to in-the-wild
in 2 days, https://www.hornetsecurity.com/en/security-
information/avaddon-from-seeking-affiliates-to-in-the-
wild-in-2-days/, [Online; accessed 23-August-2020] (6 2020).

[20] M. Malubay, Ransom.Win32.AVADDON.YJAF-A, https:
//www.trendmicro.com/vinfo/us/threat-encyclopedia/
malware/Ransom.Win32.AVADDON.YJAF-A, [Online; accessed
22-September-2020] (6 2020).

[21] R. Brewer, Ransomware attacks: detection, prevention and
cure, Network Security 2016.

[22] K. Zetter, What Is Ransomware? A Guide to the Global
Cyberattack’s Scary Method, https://www.wired.com/2017/
05/hacker-lexicon-guide-ransomware-scary-hack-thats-
rise/, [Online; accessed 16-October-2020] (5 2017).

[23] D. Y. Huang, M. M. Aliapoulios, V. G. Li, L. Invernizzi,
E. Bursztein, K. McRoberts, J. Levin, K. Levchenko, A. C.
Snoeren, D. McCoy, Tracking ransomware end-to-end, in: 2018
IEEE Symposium on Security and Privacy (SP), 2018, pp. 618–
631.

[24] S. Pastrana, G. Suarez-Tangil, A first look at the crypto-mining
malware ecosystem: A decade of unrestricted wealth, in: Pro-
ceedings of the Internet Measurement Conference, IMC ’19, As-
sociation for Computing Machinery, New York, NY, USA, 2019,
p. 73–86.

[25] R. Richardson, M. North, Ransomware: Evolution, mitigation
and prevention, International Management Review 13 (2017)
10.

[26] G. Hull, H. John, B. Arief, Ransomware deployment methods
and analysis: views from a predictive model and human re-
sponses, Crime Science 8 (2019) 1–22.

[27] A. Kharaz, S. Arshad, C. Mulliner, W. Robertson, E. Kirda,
UNVEIL: A large-scale, automated approach to detecting
ransomware, in: 25th USENIX Security Symposium (USENIX
Security 16), USENIX Association, 2016, pp. 757–772.
URL https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/
kharaz

[28] E. Kolodenker, W. Koch, G. Stringhini, M. Egele, Paybreak:
Defense against cryptographic ransomware, in: Proceedings of
the 2017 ACM on Asia Conference on Computer and Commu-
nications Security, ASIA CCS ’17, Association for Computing
Machinery, 2017, p. 599–611.

[29] D. Sgandurra, L. Muñoz-González, R. Mohsen, E. Lupu, Au-
tomated dynamic analysis of ransomware: Benefits, limitations
and use for detection, ArXiv abs/1609.03020.

13

https://www.whitehouse.gov/wp-content/uploads/2018/02/The-Cost-of-Malicious-Cyber-Activity-to-the-U.S.-Economy.pdf
https://www.whitehouse.gov/wp-content/uploads/2018/02/The-Cost-of-Malicious-Cyber-Activity-to-the-U.S.-Economy.pdf
https://www.whitehouse.gov/wp-content/uploads/2018/02/The-Cost-of-Malicious-Cyber-Activity-to-the-U.S.-Economy.pdf
https://www.dni.gov/files/CTIIC/documents/ODNI_A_Guide_to_Cyber_Attribution.pdf
https://www.dni.gov/files/CTIIC/documents/ODNI_A_Guide_to_Cyber_Attribution.pdf
https://resources.infosecinstitute.com/attribution-problem-in-cyber-attacks/
https://resources.infosecinstitute.com/attribution-problem-in-cyber-attacks/
https://www.pandasecurity.com/mediacenter/pandalabs/annual-report-cybersecurity-predictions-2018/
https://www.pandasecurity.com/mediacenter/pandalabs/annual-report-cybersecurity-predictions-2018/
https://www.pandasecurity.com/mediacenter/pandalabs/annual-report-cybersecurity-predictions-2018/
https://www.pwc.co.uk/issues/cyber-security-services/insights/what-is-behind-ransomware-attacks-increase.html
https://www.pwc.co.uk/issues/cyber-security-services/insights/what-is-behind-ransomware-attacks-increase.html
https://www.pwc.co.uk/issues/cyber-security-services/insights/what-is-behind-ransomware-attacks-increase.html
https://www.crowdstrike.com/blog/double-trouble-ransomware-data-leak-extortion-part-1/
https://www.crowdstrike.com/blog/double-trouble-ransomware-data-leak-extortion-part-1/
https://www.crowdstrike.com/blog/double-trouble-ransomware-data-leak-extortion-part-1/
https://www.pandasecurity.com/mediacenter/security/ransomware-data-breach-blackmail/
https://www.pandasecurity.com/mediacenter/security/ransomware-data-breach-blackmail/
https://www.zdnet.com/article/conti-ryuk-joins-the-ranks-of-ransomware-gangs-operating-data-leak-sites/
https://www.zdnet.com/article/conti-ryuk-joins-the-ranks-of-ransomware-gangs-operating-data-leak-sites/
https://www.zdnet.com/article/conti-ryuk-joins-the-ranks-of-ransomware-gangs-operating-data-leak-sites/
https://www.bankinfosecurity.com/blogs/ransomware-exfiltration-leaks-data-breach-p-2913
https://www.bankinfosecurity.com/blogs/ransomware-exfiltration-leaks-data-breach-p-2913
https://intel471.com/blog/ransomware-as-a-service-2020-ryuk-maze-revil-egregor-doppelpaymer/
https://intel471.com/blog/ransomware-as-a-service-2020-ryuk-maze-revil-egregor-doppelpaymer/
https://doi.org/10.1145/3131365.3131389
https://doi.org/10.1145/3131365.3131389
http://dx.doi.org/10.1145/3131365.3131389
http://dx.doi.org/10.1145/3131365.3131389
https://doi.org/10.1145/3131365.3131389
https://www.subexsecure.com/pdf/malware-reports/June-2020/Avaddon_Ransomware.pdf
https://www.subexsecure.com/pdf/malware-reports/June-2020/Avaddon_Ransomware.pdf
https://www.subexsecure.com/pdf/malware-reports/June-2020/Avaddon_Ransomware.pdf
https://id-ransomware.blogspot.com/2020/06/avaddon-ransomware.html
https://id-ransomware.blogspot.com/2020/06/avaddon-ransomware.html
https://www.hornetsecurity.com/en/security-information/avaddon-from-seeking-affiliates-to-in-the-wild-in-2-days/
https://www.hornetsecurity.com/en/security-information/avaddon-from-seeking-affiliates-to-in-the-wild-in-2-days/
https://www.hornetsecurity.com/en/security-information/avaddon-from-seeking-affiliates-to-in-the-wild-in-2-days/
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/Ransom.Win32.AVADDON.YJAF-A
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/Ransom.Win32.AVADDON.YJAF-A
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/Ransom.Win32.AVADDON.YJAF-A
https://www.wired.com/2017/05/hacker-lexicon-guide-ransomware-scary-hack-thats-rise/
https://www.wired.com/2017/05/hacker-lexicon-guide-ransomware-scary-hack-thats-rise/
https://www.wired.com/2017/05/hacker-lexicon-guide-ransomware-scary-hack-thats-rise/
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kharaz
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kharaz
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kharaz
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kharaz
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kharaz

[30] R. Vinayakumar, K. P. Soman, K. K. Senthil Velan,
S. Ganorkar, Evaluating shallow and deep networks for ran-
somware detection and classification, in: 2017 International
Conference on Advances in Computing, Communications and
Informatics (ICACCI), 2017, pp. 259–265.

[31] K. Lee, S. Lee, K. Yim, Machine learning based file entropy
analysis for ransomware detection in backup systems, IEEE Ac-
cess 7 (2019) 110205–110215.

[32] J. Caballero, C. Grier, C. Kreibich, V. Paxson, Measuring pay-
per-install: the commoditization of malware distribution., in:
Usenix security symposium, Vol. 13, 2011.

[33] Kaspersky, xDedic – the shady world of hacked servers
for sale, https://securelist.com/xdedic-the-shady-world-
of-hacked-servers-for-sale/75027/, [Online; accessed 04-
February-2021] (6 2016).

[34] R. Bhalerao, M. Aliapoulios, I. Shumailov, S. Afroz, D. McCoy,
Mapping the underground: supervised discovery of cybercrime
supply chains, in: 2019 APWG Symposium on Electronic Crime
Research (eCrime), IEEE, 2019, pp. 1–16.

[35] PintSizeNore, AVADDON Ransomware (.avdn; [id]-
readme.html) Support Topic, https://www.bleepingcomputer.
com/forums/t/724607/avaddon-ransomware-avdn;-id-
readmehtml-support-topic/page-2#entry5061940, [Online;
accessed 14-October-2020] (09 2020).

[36] M. De Jesus, M. Malubay, A. Christelle Ramos, Ran-
somware Report: Avaddon and New Techniques Emerge,
Industrial Sector Targeted, https://www.trendmicro.
com/vinfo/us/security/news/cybercrime-and-digital-
threats/ransomware-report-avaddon-and-new-techniques-
emerge-industrial-sector-targeted, [Online; accessed
22-September-2020] (7 2020).

[37] M. J. Schwartz, Avaddon Ransomware Joins Data-Leaking
Club, https://www.bankinfosecurity.com/avaddon-
ransomware-joins-data-leaking-club-a-14809, [Online;
accessed 22-September-2020] (8 2020).

[38] L. Abrams, Avaddon ransomware launches data leak site to
extort victims, https://www.bleepingcomputer.com/news/
security/avaddon-ransomware-launches-data-leak-site-
to-extort-victims/, [Online; accessed 22-September-2020] (8
2020).

[39] L. Abrams, Avaddon ransomware launches data leak site to
extort victims, https://www.bleepingcomputer.com/news/
security/another-ransomware-now-uses-ddos-attacks-to-
force-victims-to-pay/, [Online; accessed 03-February-2021]
(1 2021).

[40] Emsisoft, Urgently Needed! Avaddon ransomware (.avdn),
https://support.emsisoft.com/topic/33623-urgently-
needed-avaddon-ransomware-avdn/, [Online; accessed 21-
October-2020] (2020).

[41] B. Computer, AVADDON Ransomware (.avdn; [id]-
readme.html) Support Topic, https://www.bleepingcomputer.
com/forums/t/724607/avaddon-ransomware-avdn;-id-
readmehtml-support-topic/page-2, [Online; accessed 21-
October-2020] (2020).

[42] Microsoft, PE Format, https://docs.microsoft.com/en-
us/windows/win32/debug/pe-format, [Online; accessed 01-
October-2020] (2020).

[43] R. Lyda, J. Hamrock, Using entropy analysis to find encrypted
and packed malware, IEEE Security and Privacy 5 (2) (2007)
40–45.

[44] P. V. Sabanal, M. V. Yason, Reversing c++, Black Hat DC.
[45] hfiref0x2017, UAC bypass using CMSTPLUA COM

interface, https://gist.github.com/api0cradle/
d4aaef39db0d845627d819b2b6b30512, [Online; accessed 31-
August-2020] (2017).

[46] A. Osipov, Trickbot Trojan leveraging a new Windows 10 UAC
bypass, https://blog.morphisec.com/trickbot-uses-a-new-
windows-10-uac-bypass, [Online; accessed 31-August-2020]
(2020).

[47] S. in bits, UAC bypass analysis (Stage 1) Ataware Ransomware
– Part 0x2, https://www.securityinbits.com/malware-

analysis/uac-bypass-analysis-stage-1-ataware-
ransomware-part-2/, [Online; accessed 31-August-2020]
(2019).

[48] Microsoft, EnableLUA, https://docs.microsoft.com/en-
us/openspecs/windows_protocols/ms-gpsb/958053ae-5397-
4f96-977f-b7700ee461ec, [Online; accessed 21-July-2020]
(2019).

[49] Microsoft, ConsentPromptBehaviorAdmin, https://docs.
microsoft.com/en-us/openspecs/windows_protocols/ms-
gpsb/341747f5-6b5d-4d30-85fc-fa1cc04038d4, [Online;
accessed 21-July-2020] (2019).

[50] Microsoft, Mapped drives are not available from an elevated
prompt when UAC is configured to "Prompt for creden-
tials" in Windows, https://support.microsoft.com/en-
us/help/3035277/mapped-drives-are-not-available-from-
an-elevated-prompt-when-uac-is-co, [Online; accessed
21-July-2020] (2015).

[51] Lockheed Martin, The Cyber Kill Chain, https://www.
lockheedmartin.com/en-us/capabilities/cyber/cyber-
kill-chain.html, [Online; accessed 08-October-2020].

[52] B. Baskin, TAU Threat Analysis: Medusa Locker Ran-
somware, https://www.carbonblack.com/blog/tau-threat-
analysis-medusa-locker-ransomware/, [Online; accessed
19-October-2020] (June 2020).

[53] A. Zsigovits, Ransomware-LockBit, https://github.com/
sophoslabs/IoCs/blob/master/Ransomware-LockBit, [Online;
accessed 19-October-2020] (2020).

[54] Microsoft, CryptImportKey function, https://docs.
microsoft.com/en-us/windows/win32/api/wincrypt/nf-
wincrypt-cryptimportkey, [Online; accessed 27-August-2020]
(2018).

[55] Sasza, Structure of HCRYPTKEY Data, https:
//forums.codeguru.com/showthread.php?79163-Structure-
of-HCRYPTKEY-Data, [Online; accessed 26-September-2020]
(2020).

[56] Microsoft, ALG_ID, https://docs.microsoft.com/en-
us/windows/win32/seccrypto/alg-id, [Online; accessed
26-September-2020] (2018).

14

https://securelist.com/xdedic-the-shady-world-of-hacked-servers-for-sale/75027/
https://securelist.com/xdedic-the-shady-world-of-hacked-servers-for-sale/75027/
https://www.bleepingcomputer.com/forums/t/724607/avaddon-ransomware-avdn;-id-readmehtml-support-topic/page-2#entry5061940
https://www.bleepingcomputer.com/forums/t/724607/avaddon-ransomware-avdn;-id-readmehtml-support-topic/page-2#entry5061940
https://www.bleepingcomputer.com/forums/t/724607/avaddon-ransomware-avdn;-id-readmehtml-support-topic/page-2#entry5061940
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/ransomware-report-avaddon-and-new-techniques-emerge-industrial-sector-targeted
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/ransomware-report-avaddon-and-new-techniques-emerge-industrial-sector-targeted
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/ransomware-report-avaddon-and-new-techniques-emerge-industrial-sector-targeted
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/ransomware-report-avaddon-and-new-techniques-emerge-industrial-sector-targeted
https://www.bankinfosecurity.com/avaddon-ransomware-joins-data-leaking-club-a-14809
https://www.bankinfosecurity.com/avaddon-ransomware-joins-data-leaking-club-a-14809
https://www.bleepingcomputer.com/news/security/avaddon-ransomware-launches-data-leak-site-to-extort-victims/
https://www.bleepingcomputer.com/news/security/avaddon-ransomware-launches-data-leak-site-to-extort-victims/
https://www.bleepingcomputer.com/news/security/avaddon-ransomware-launches-data-leak-site-to-extort-victims/
https://www.bleepingcomputer.com/news/security/another-ransomware-now-uses-ddos-attacks-to-force-victims-to-pay/
https://www.bleepingcomputer.com/news/security/another-ransomware-now-uses-ddos-attacks-to-force-victims-to-pay/
https://www.bleepingcomputer.com/news/security/another-ransomware-now-uses-ddos-attacks-to-force-victims-to-pay/
https://support.emsisoft.com/topic/33623-urgently-needed-avaddon-ransomware-avdn/
https://support.emsisoft.com/topic/33623-urgently-needed-avaddon-ransomware-avdn/
https://www.bleepingcomputer.com/forums/t/724607/avaddon-ransomware-avdn;-id-readmehtml-support-topic/page-2
https://www.bleepingcomputer.com/forums/t/724607/avaddon-ransomware-avdn;-id-readmehtml-support-topic/page-2
https://www.bleepingcomputer.com/forums/t/724607/avaddon-ransomware-avdn;-id-readmehtml-support-topic/page-2
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://gist.github.com/api0cradle/d4aaef39db0d845627d819b2b6b30512
https://gist.github.com/api0cradle/d4aaef39db0d845627d819b2b6b30512
https://blog.morphisec.com/trickbot-uses-a-new-windows-10-uac-bypass
https://blog.morphisec.com/trickbot-uses-a-new-windows-10-uac-bypass
https://www.securityinbits.com/malware-analysis/uac-bypass-analysis-stage-1-ataware-ransomware-part-2/
https://www.securityinbits.com/malware-analysis/uac-bypass-analysis-stage-1-ataware-ransomware-part-2/
https://www.securityinbits.com/malware-analysis/uac-bypass-analysis-stage-1-ataware-ransomware-part-2/
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-gpsb/958053ae-5397-4f96-977f-b7700ee461ec
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-gpsb/958053ae-5397-4f96-977f-b7700ee461ec
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-gpsb/958053ae-5397-4f96-977f-b7700ee461ec
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-gpsb/341747f5-6b5d-4d30-85fc-fa1cc04038d4
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-gpsb/341747f5-6b5d-4d30-85fc-fa1cc04038d4
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-gpsb/341747f5-6b5d-4d30-85fc-fa1cc04038d4
https://support.microsoft.com/en-us/help/3035277/mapped-drives-are-not-available-from-an-elevated-prompt-when-uac-is-co
https://support.microsoft.com/en-us/help/3035277/mapped-drives-are-not-available-from-an-elevated-prompt-when-uac-is-co
https://support.microsoft.com/en-us/help/3035277/mapped-drives-are-not-available-from-an-elevated-prompt-when-uac-is-co
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://www.carbonblack.com/blog/tau-threat-analysis-medusa-locker-ransomware/
https://www.carbonblack.com/blog/tau-threat-analysis-medusa-locker-ransomware/
https://github.com/sophoslabs/IoCs/blob/master/Ransomware-LockBit
https://github.com/sophoslabs/IoCs/blob/master/Ransomware-LockBit
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptimportkey
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptimportkey
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptimportkey
https://forums.codeguru.com/showthread.php?79163-Structure-of-HCRYPTKEY-Data
https://forums.codeguru.com/showthread.php?79163-Structure-of-HCRYPTKEY-Data
https://forums.codeguru.com/showthread.php?79163-Structure-of-HCRYPTKEY-Data
https://docs.microsoft.com/en-us/windows/win32/seccrypto/alg-id
https://docs.microsoft.com/en-us/windows/win32/seccrypto/alg-id

Appendix A

“C:\Program Files\Microsoft\Exchange Server”
“C:\Program Files (x86)\Microsoft\Exchange Server”
“C:\Program Files\Microsoft SQL Server”
“C:\Program Files (x86)\Microsoft SQL Server”
“C:\Windows”
“C:\Program Files”
“C:\Users\All Users”
“C:\Users\Public”
“C:\Users\%User Profile%\AppData\Local\Temp”
“C:\Program Files (x86)”
“C:\Users\%User Profile%\AppData”
“C:\ProgramData”
“Tor Browser”
“AppData”
“ProgramData”
“Program Files”
“Windows”
Name of the ransom note (e.g., “363053-readme.html”)
“bckgrd.bmp”

Table 2: List of whitelisted strings in the encryption process.

15

	1 Introduction
	2 Background and related work
	2.1 The Ransomware threat
	2.2 The ecosystem of Avaddon

	3 Ransomware analysis
	3.1 Packing protections
	3.2 Imported functions
	3.3 Strings
	3.4 Anti-analysis techniques
	3.5 Language checks
	3.6 Privilege escalation
	3.7 Persistence and infection tracking
	3.8 Process and service manipulation
	3.9 Key generation
	3.10 File encryption

	4 Decryption of infected systems
	5 Experimentation
	6 Conclusions

