
You Can Type, but You Can’t Hide: A Stealthy
GPU-based Keylogger

Evangelos Ladakis,* Lazaros Koromilas,* Giorgos Vasiliadis,*

Michalis Polychronakis,† Sotiris Ioannidis*

*Institute of Computer Science, Foundation for Research and Technology—Hellas, Greece
†Columbia University, USA

{ladakis, koromil, gvasil, sotiris}@ics.forth.gr, mikepo@cs.columbia.edu

ABSTRACT
Keyloggers are a prominent class of malware that harvests
sensitive data by recording any typed in information. Key-
logger implementations strive to hide their presence using
rootkit-like techniques to evade detection by antivirus and
other system protections. In this paper, we present a new
approach for implementing a stealthy keylogger: we explore
the possibility of leveraging the graphics card as an alterna-
tive environment for hosting the operation of a keylogger.
The key idea behind our approach is to monitor the system’s
keyboard buffer directly from the GPU via DMA, without
any hooks or modifications in the kernel’s code and data
structures besides the page table. The evaluation of our pro-
totype implementation shows that a GPU-based keylogger
can effectively record all user keystrokes, store them in the
memory space of the GPU, and even analyze the recorded
data in-place, with negligible runtime overhead.

1. INTRODUCTION
Keyloggers are one of the most serious types of malware

that surreptitiously log keyboard activity, and typically exfil-
trate the recorded data to third parties [12]. Despite signifi-
cant research and commercial efforts [16,17,21,22], keyloggers
still pose an important threat of stealing personal and finan-
cial information [1]. Keyloggers can be implemented as tiny
hardware devices [2, 3], or more conveniently, in software [4].
Software keyloggers can be implemented either at the user

or kernel level. User-level keyloggers generally use high-level
APIs to monitor keystrokes. For example, Windows provides
the GetAsyncKeyState function to determine whether a
key is pressed or not at the time the function is called, and
whether the key was pressed after a previous call. User-space
keyloggers, while easy to write, are also relatively easy to
detect, using hook-based techniques [28]. In contrast, kernel
level keyloggers run inside the OS kernel and record all data
originating from the keyboard. Typically, a kernel level
keylogger hooks specific system calls or driver functions. The
injected malicious code is programmed to capture all user

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EuroSec’13 April 14 2013, Prague, Czech Republic
Copyright 2013 ACM 978-1-4503-2120-4/13/04 ...$15.00.

keystrokes passed through the hooked function call. Although
kernel-level keyloggers are more sophisticated and stealthy
than user-level keyloggers, they heavily rely on kernel code
modifications, and thus can be detected by kernel integrity
and code attestation tools [25, 26].
In this paper, we present how malware can tap the general-

purpose computation capability of modern graphics proces-
sors to increase the stealthiness of keylogging. By instructing
the GPU to carefully monitor via DMA the physical page
where the keyboard buffer resides, a GPU-based keylogger
can record all user keystrokes and store them in the memory
space of the GPU. An important property of our keylogger is
that it does not rely on any kernel modifications besides alter-
ing the page table, and uses a small code snippet that needs
to run just once from kernel context to acquire the physical
address of the keyboard buffer. This code is completely stan-
dalone, does not require any hooks or other modifications,
and is completely removed after it accomplishes its task.
The physical address of the keyboard buffer is then used by
the GPU to monitor all user keystrokes directly via DMA,
through the direction of a user-level controller process.
We have implemented and evaluated our prototype GPU-

based keylogger for Linux and the 32-bit x86 architecture.
The results of our evaluation demonstrate the efficiency and
effectiveness of GPUs for capturing short-lived data from the
host memory, while keeping the CPU and GPU utilization
at minimal levels, in our case about 0.1%.
The main contributions of this work are:
• We present the first (to the best of our knowledge)
GPU keylogger, capable of monitoring all keystroke
events and storing them in the GPU memory.
• We have experimentally evaluated our GPU-based key-
logger and demonstrate that it can be used effectively
and efficiently for capturing all keystroke events. By
carefully scheduling the GPU kernel invocations, the
keylogger can capture all keystroke events without af-
fecting the proper rendering of the graphics and with
minimal overhead.

2. BACKGROUND
General-purpose computing on graphics processing units

has drastically evolved during the last few years. Historically,
the GPU has been used for handling 2D and 3D graphics
rendering, effectively offloading the CPU from these compu-
tationally intensive operations. Driven to a large extent by
the ever-growing video game industry, graphics processors
have been constantly evolving, increasing both in compu-

tational power and in the range of supported operations
and functionality. Meanwhile, programmers began exploring
ways for enabling their applications to take advantage of the
massively parallel architecture of modern GPUs.
Standard graphics APIs such as OpenGL and DirectX, do

not expose much of the underlying computational capabilities
that graphics hardware can provide. Data and variables have
to be mapped to graphics objects, while algorithms must be
expressed as pixel or vertex shaders. The Compute Unified
Device Architecture (CUDA) introduced by NVIDIA [20] is a
significant advance, exposing several hardware features that
are not available via the graphics API.1 CUDA consists of a
minimal set of extensions to the C language and a runtime
library that provides functions to control the GPU from the
host, as well as device-specific functions and data types.
At the top level, an application written for CUDA consists

of a serial program running on the CPU, and a parallel part,
called a kernel, that runs on the GPU. A kernel, however, can
only be invoked by a parent process running on the CPU. As
a consequence, a kernel cannot be initiated as a stand-alone
application, and it strongly depends on the CPU process
that invokes it. Each kernel is executed on the device as
many different threads organized in thread blocks. Thread
blocks are executed by the multiprocessors of the GPU in
parallel. In addition to program execution, CUDA also
provides appropriate functions for data exchange between
the host and the device. All I/O transactions are performed
via DMA over the PCI Express bus. DMA enables the GPU
to trasfer data directly—without any CPU involvement—to
and from the host memory, using a dedicated DMA engine.
Typically, the GPU can only access specific memory regions,
allocated by the operating system.
Given the great potential of general-purpose computing

on graphics processors, it is only natural to expect that
malware authors would attempt to tap the powerful features
of modern GPUs to their benefit [24, 32]. The ability to
execute general purpose code on the GPU opens a whole new
window of opportunity for malware authors to significantly
raise the bar against existing defenses. Existing malicious
code analysis systems primarily support x86 code, while
current virus scanning tools cannot detect malicious code
stored in separate device memory and executed on a processor
other than the CPU. In addition, the majority of security
researchers are not familiar with the execution environment
and the instruction set of graphics processors.
A GPU-assisted malware binary contains code destined to

run on different processors. Upon execution, the malware
loads the device-specific code on the GPU, allocates a mem-
ory area accessible by both the CPU and the GPU, initializes
it with any shared data, and schedules the execution of the
GPU code. Depending on the design, the flow of control can
either switch back and forth between the CPU and the GPU,
or separate tasks can run in parallel on both processors.
A major advantage for malware authors is that the major-

ity of current video card manufacturers, representing about
99% of the worldwide graphics cards market share [5], do
provide support for GPGPU computations. Consequently,
GPU-based malware can have a large infection ratio with-
out being inhibited by unsupported graphics processors. In
addition, the execution of GPU code and data transfers
between the host and the device do not require any adminis-
1 AMD and Intel offer similar SDKs for its ATI line of GPUs
and the Intel HD Graphics 4000/2500 .

kernel module

controller
process

memory
scanner

GPU
code

start
keylogger

manipulate
page table entries

locate
buffer

sc
an

pa
ge

s

1

234

Figure 1: Temporary and permanent components
of the keylogger. Gray denotes bootstrapping oper-
ations, while black denotes monitoring functions.

trator privileges. In other words, depending on its purpose,
GPU-assisted malware can run successfully even under user
privileges, making it more robust and deployable.

3. GPU-BASED KEYLOGGING
In this section we present in detail the design of a proof-

of-concept keylogger implemented on the GPU. Instead of
relying on rootkit-like techniques, such as hooking system
functions and manipulating critical data structures, our key-
logger monitors the contents of the system’s keyboard buffer
directly from the GPU.
One of the primary challenges of this design is how to

locate the memory address of the keyboard buffer, as (i)
the keyboard buffer is not exported in the kernel’s symbol
table, making it not accessible directly by loadable modules,
and (ii) the memory space allocated for data structures is
different after every system boot or after unplugging and
plugging back in the device. Typically, loadable modules
allocate memory dynamically, hence object addresses are not
necessarily the same after a system reboot. In addition, the
OS can apply certain randomization algorithms to hinder an
attacker that tries to predict an object’s address.
To overcome the randomized placement of the keyboard

buffer, the attacker has to scan the whole memory. As a
consequence, our GPU-based keystroke logger consists of
two main components: (i) a CPU-based component that
is executed once, at the bootstrap phase, with the task of
locating the address of the keyboard buffer in main memory,
and (ii) a GPU-based component that monitors, via DMA,
the keyboard buffer and records all keystroke events. Figure 1
displays the bootstrapping (gray) and monitoring (black)
components of the system, along with the sequence of their
interactions.

3.1 Locating the Keyboard Buffer
In Linux, an attached USB device is represented by a USB

Request Block (URB) structure, defined in the linux/usb.h
header file of the Linux source tree. Figure 2 shows the
fields of the USB Request Block structure that are relevant
for our work. For a USB keyboard device, in particular,
the keyboard buffer is part of the URB structure, in the
field transfer_buffer. Unfortunately, the memory offset
where the URB structure is placed is different every time
the system restarts. To locate the exact offset of the key-
board buffer (Figure 1, step 1), we have to scan the whole
memory sequentially [30]. However, modern OSes, including
Linux and Windows, do not allow users to access memory
regions that have not been assigned to them. An access to a
page that is not mapped to a process’ virtual address space

...
struct usb_device *dev
...
void *transfer_buffer
dma_addr_t *transfer_dma
...
u32 *transfer_buffer_length
...

Figure 2: Fields of interest in the USB Request
Block (URB) structure.

is typically considered illegal, resulting in a segmentation
fault. To access the memory regions where the OS kernel
and data structures reside, the memory scanning phase of
the keylogger needs to run with administrative privileges.
Linux offers the /dev/mem and /dev/kmem special files

to allow a privileged user to access the physical memory and
the kernel virtual memory, respectively. For security reasons
though, recent distributions disable them by default; access
to the /dev/mem and /dev/kmem files is allowed only if the
Linux kernel has been explicitly compiled without the option
CONFIG_STRICT_DEVMEM=y. Instead, we have implemented
a loadable kernel module (LKM) that scans the whole main
memory of the host (Figure 1, step 2). The kernel module
uses the same mechanism as the /dev/mem character device
to implement access to physical pages.
The pseudocode for scanning the low memory addresses

of a 32-bit x86 system is shown in Figure 3. This approach
is sufficient for memory allocated using kmalloc(), which
always returns kernel virtual addresses that have a physi-
cal mapping (logical addresses) [8]. To locate the keyboard
buffer, we begin to search for pointers to USB device struc-
tures. Such pointers are memory-aligned to 0x400 boundaries,
and the corresponding transfer_dma fields are aligned to
0x20 boundaries. If both conditions are true, we check if
the product field contains any of the substrings “usb” and
“keyboard” (for wired USB keyboards), or “usb” and “re-
ceiver” (for wireless keyboard/mouse sets). As a final step,
we check that the field transfer_buffer_length contains
the appropriate length (8 bytes) and that it contains valid
keystroke values, e.g., all bytes are zero if no key is pressed.
For 32-bit systems, in which the kernel address space is at
most 1 GB, the total search time in the worst case is just
about 3.2 seconds.2

3.2 Capturing Keystrokes
Having located the memory address of the buffer used

by the keyboard device driver, the next step is to configure
the GPU to constantly monitor its contents for changes.
To achieve this, the GPU must have access to the kernel’s
keyboard buffer. NVIDIA CUDA devices share a unified
address space with the host controller process that manages
the GPU [20]. Consequently, to be accessible directly by the
GPU, the keyboard buffer must be mapped in the virtual
address space of the host process. This can be achieved
by manipulating the page table of the controller process
to include the page in which the keyboard buffer resides
(Figure 1, step 3).

During the initialization phase, the controller process ac-
2In 64-bit architectures, where the kernel virtual address
space can be larger than 1 GB, the search time grows linearly
and is proportional to the size of the physical memory.

#define __va(x) ((void *)((unsigned long)(x)+PAGE_OFFSET))

for (i = 0; i < totalmem; i += 0x10) {
struct urb *urbp = (struct urb *)__va(i);

if (((urbp->dev % 0x400) == 0) &&
((urbp->transfer_dma % 0x20) == 0) &&
(urbp->transfer_buffer_length == 8) &&
(urbp->transfer_buffer != NULL) &&
strncmp(urbp->dev->product, "usb", 32) &&
strncmp(urbp->dev->product, "keyboard", 32)) {

/* potential match */
}

}

Figure 3: Pseudocode for locating the keyboard
buffer. Whenever the condition of the if-statement
is true, a potential URB structure of interest has
been found. We verify whether a matching struc-
ture corresponds to the keyboard device by check-
ing if the content of the transfer_buffer field con-
forms to the appropriate format, i.e., contains valid
keystroke values.

quires a dummy memory page using the mmap() system call.
After the completion of the scanning phase, the bootstrap-
ping kernel module locates the controller process’ page table
and changes the virtual mapping of the dummy page to point
to the physical page that contains the keyboard buffer. After
the GPU begins monitoring the buffer (Figure 1, step 4),
the controller process immediately releases the page using
munmap(). By doing so, the controller process does not
account for that page any longer, allowing it to evade poten-
tial anomaly detection tools that check for suspicious page
table mappings. Note that this does not affect the ability of
the GPU to access the keyboard buffer, as it uses physical
addressing through DMA, without any CPU intervention.
In essence, the virtual mapping is only initially required to
“trick” the CUDA API to allow DMA access to a physical
page that otherwise would not be accessible.
To capture keystroke events, the GPU constantly monitors

the buffer for changes. As we discuss in Section 4, an interval
of less than 100 ms allows the recording of all keystrokes even
for fast typists, with minimal runtime overhead and without
adding any contention due to consecutive accesses. The size
of the buffer is eight bytes.3 The first byte corresponds to the
scancodes of modifier keys, such as Alt, Shift, and Ctrl.
If more than one modifiers are active at the same time, this
value is encoded as the sum of the individual scancodes. The
second byte has no special use. The last six bytes represent
the scancodes of the rest of the pressed keys. At any given
moment, the buffer may contain one to six non-zero bytes
that represent the pressed keys. Whenever a user presses
a key (or a combination of keys), the corresponding scan
codes are written in the buffer, and remain there as long as
the key(s) are pressed. By the time the user releases the
key(s), the corresponding values are zeroed. An error state
occurs when several keys are pressed simultaneously, and is
represented by two zeroes followed by six ones.
Captured keystrokes are translated from raw scan codes

into ASCII characters using a simple dispatcher, and are
stored in the device memory of the GPU. Modern GPUs con-
3In Linux, the usbhid keyboard driver allocates an 8-byte
memory area for the transfer_buffer field of the USB
Request Block that is used to handle the keyboard interrupts.

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1 1 10 100 1000

C
P
U

 u
ti

liz
a
ti

o
n
 (

p
e
rc

e
n
t)

Kernel invocation interval (msecs)

Figure 4: CPU utilization of the keylogger for dif-
ferent GPU kernel invocation intervals.

10-6

10-5

10-4

10-3

 0.01

 0.1

 0.001 0.01 0.1 1 10 100 1000

G
P
U

 u
ti

liz
a
ti

o
n
 (

p
e
rc

e
n
t)

Kernel invocation interval (msecs)

Figure 5: GPU utilization of the keylogger for dif-
ferent GPU kernel invocation intervals.

tain from many hundreds of MBs, up to 2–3 GBs of memory,
which is plenty for storing the recorded keystrokes. Further-
more, the parallel capabilities of modern GPUs can also be
exploited to analyze the captured data, e.g., for extracting
sensitive data such as credit card numbers and web-banking
credentials. We have implemented a very simple module
that performs regular expression matching—using an exist-
ing GPU-based pattern matching implementation [33]—over
the recorded keystrokes periodically. As shown in Section 4,
the GPU is capable of matching tens of MBs in less time
than the time needed for a single user key press.

4. EVALUATION
To evaluate our prototype GPU-based keylogger, we used

a commodity desktop equipped with an Intel E6750 Dual-
Core CPU at 2.66GHz and 4GB of main memory. We use
several NVIDIA graphics cards: both low-end (GT630) and
high-end (GTX480). Our desktop runs Ubuntu Linux 12.10
with kernel v3.5.0. We measure GPU execution times using
CUDA’s command line profiler facilities [19].
In our first experiment, we measure the CPU and GPU

utilization of the keylogger. The CPU time corresponds to
the controller process, which periodically just makes a simple
function call, provided by the GPU driver, instructing the
GPU to invoke the keylogging GPU kernel function. The
GPU kernel function reads the keyboard event buffer, oc-
casionally performs simple data analysis tasks, and returns
to the controller process, which remains idle for a speci-

Type Regular Expression

VISA ∧4[0− 9]{12}(? : [0− 9]{3})?$
MasterCard ∧5[1− 5][0− 9]{14}$
American Express ∧3[47][0− 9]{13}$
Diners Club ∧3(? : 0[0− 5]|[68][0− 9])[0− 9]{11}$
Discover ∧6(? : 011|5[0− 9]{2})[0− 9]{12}$

Table 1: Regular expressions used for matching var-
ious types of credit card numbers.

fied interval. This approach is necessary because the GPU
is also used for graphics rendering, and longer execution
times of the GPU component would affect the proper dis-
play of graphics. More importantly, current GPUs use a
non-preemptive scheduling mechanism, hence a running task
cannot be interrupted.
This introduces an interesting trade-off: As the frequency

of the GPU kernel function invocation increases, so does the
CPU and GPU overhead of the keylogger, and the risk of
affecting the proper display of graphics—an event which the
user may notice. On the other hand, less frequent kernel
invocations do not have any noticeable impact in graphics
rendering, but may result to missed keystroke events. Fig-
ures 4 and 5 show the keylogger’s CPU and GPU utilization
when varying the GPU kernel invocation interval. Typically,
the duration of a single keypress varies from 100 ms for faster
typists, to over one second for slower typists [14]. Conse-
quently, the GPU invocation interval should be kept under
100 ms, to enable accurate monitoring of all key presses,
without missed events. As shown in both figures, we have
chosen an interval of 90 ms, which has minimal performance
impact: the CPU utilization is about 0.1% (Figure 4), while
the GPU has negligible utilization of 5 · 10−5 % (Figure 5).
The time needed by the GPU to read the contents of the
8-byte keyboard buffer over the PCIe bus is about 0.005 ms.
In the next experiment, we measure the time needed by the

GPU to scan the captured data and extract sensitive infor-
mation. Specifically, we search the recorded data for various
types of credit card numbers, using the regular expressions
shown in Table 1. Figure 6 shows the corresponding GPU
execution times for different input sizes. We observe that
the running times are below one millisecond even for buffer
sizes in the order of Megabytes. As such, the scanning over-
head is negligible, given that the average user needs several
seconds to type a few hundred of bytes. Data analysis can
be performed infrequently, e.g., after the accumulation of a
few Megabytes of new data.

5. COUNTERMEASURES
Current malware analysis and detection systems are tai-

lored to CPU architectures only, and therefore are ineffective
against GPU-based malware. Fortunately, however, mali-
cious code that runs on a GPU can be identified in several
ways. To properly identify GPU-based malware though, ex-
isting defenses need to be enhanced with new functionality
for the analysis of GPU machine code.

5.1 GPU Code Analysis
NVIDIA recently released cuda-gdb and cuda-memcheck,

two debugger tools for CUDA applications [20]. The goal of
cuda-memcheck is to provide a lightweight mechanism for

checking runtime memory errors. The cuda-gdb is capable
of debugging in real time a CUDA application running on
the actual GPU, similarly to gdb(1). Since version 5.0,
cuda-gdb can attach to a running process, and inspect the
state of the GPU at any point. We note, however, that an
attacker could easily strip debug symbols from the malicious
code, and significantly complicate its analysis. Still, support
for basic debugging of GPU code is a crucial first step to-
ward analyzing GPU-assisted malware binaries. Analogous
situations have repeatedly occurred in the past, e.g., when-
ever popular processor architectures would be extended with
additional instructions for floating point or other special-
ized computations, which malware afterwords exploited for
hindering detection and analysis.
An important consideration for malware analysis systems

build on top of virtual machine environments [7,13,15,18,27,
35] is the proper support of GPGPU APIs, in place of basic
graphics device emulation. Virtual machine monitors usually
provide a virtualization layer between the actual graphics
card of the host system, and the emulated graphics card
presented to the guest OSes, allowing multiple VMs to access
the same device. Therefore, when running on existing virtual
machines, GPGPU applications fail to execute because the
driver of the virtual graphics device does not support any of
the GPGPU APIs. Recent works have proposed a virtualized
environment to provide GPU visibility from within virtual
machines [9–11, 29]. Unfortunately, the purpose of these
works is to allow GPU sharing among different applications,
using multiplexing and queueing mechanisms, rather than
simulating the graphics processors. The latter approach is
crucial for tracing the behaviour of a malicious GPU kernel.

5.2 Runtime Detection
A possible mechanism for the detection of GPU-assisted

malware can be based on the observation of DMA side effects.
Stewin et al. [31] have shown that DMA malware has DMA
side effects that can be reliably measured. However, the
proposed technique works for DMA malware that performs
bulk DMA transfers, e.g., continually searching the host’s
memory for valuable data to carry out an attack. As a
GPU-based keylogger does not need to perform any bulk
transfers, it is not clear if this technique could be applied as
an effective defense. Alternatively, a possible defense could
be based on profiling the GPU utilization or monitoring its
access patterns.

6. DISCUSSION
A major limitation of our prototype GPU-based keylogger

is that it requires a CPU process to control its execution. The
only purpose of the CPU code is to periodically trigger the
malicious GPU kernel, an operation that can be implemented
with a few machine instructions, resulting in minimal memory
footprint. For instance, the CPU binary size of our current
prototype is less than 4 KB. This allows an attacker to easily
hide the CPU component of the keylogger by injecting its
code into the address space of an existing benign user-level
process [6, 23,34].
Another limitation of our prototype implementation is that

it requires administrative privileges for initializing the envi-
ronment required to allow the GPU to monitor the keyboard
buffer. However, the code that needs to run with administra-
tive privileges is solely used for acquiring the address of the
keyboard buffer and enabling the GPU to access its physical

 0

 1000

 2000

 3000

 4000

 5000

 6000

4 16 64 256 1K 4K 16K 64K 256K 1M 4M

G
P
U

 e
x
e
cu

ti
o
n
 t

im
e
 (

u
se

c)

Buffer size (bytes)

GeForce GTX 480
GeForce GT 630

Figure 6: Execution times for low-end (GT630) and
high-end (GTX480) graphics cards, when extracting
credit card numbers (using the regular expressions
of Table 1) for different captured data sizes.

page, and is completely removed afterwards. In contrast to
existing rootkits and kernel-level keyloggers, it does not need
to hook any code or manipulate any data structures for hid-
ing its presence. The kernel code and data structures remain
intact, while the GPU continues to monitor all keyboard
activity. As described in Section 3, our prototype uses a
loadable kernel module to execute code within the kernel. We
should note that this choice was made only for convenience,
and the same stealthy approaches that are typically used for
the installation of kernel-level rootkits can be employed, e.g.,
by exploiting a vulnerability and injecting malicious code
directly into the kernel.

7. CONCLUSION AND FUTURE WORK
In this paper we presented a stealthy keylogger that runs

directly on a graphics processor, allowing it to evade current
protection mechanisms that run on the host CPU and are
tailored to CPU code. We have implemented and evaluated
our GPU-based keylogger on both low-end and high-end
NVIDIA graphics cards. Besides recording keystrokes, the
architecture of modern graphics processors enables our pro-
totype to benefit from their excess computational capacity
for analyzing the captured data. To demonstrate this ability,
our prototype uses the streaming processors of the GPU to
extract credit card numbers from the captured keystrokes
with negligible runtime overhead.
Currently, our GPU keylogger has a small memory foot-

print on the host memory, and minimal CPU and GPU
utilization, about 0.1%. These characteristics can signif-
icantly increase its stealthiness and raise the bar against
existing defenses.
We conclude that our GPU-based keylogger could be part

of a rootkit that, at runtime, would provide a stealthy mech-
anism for extracting sensitive data from an infected host.
Our work clearly demonstrates that additional protection
mechanisms are needed to efficiently defend against mali-
cious code executed on graphics processors. As part of our
future work, we plan to port our prototype implementation
for Windows, and explore similar techniques for performing
other malicious activities, including the acquisition of sen-
sitive data, such as cryptographic keys, credentials for web
banking accounts, web-camera snapshots, screenshots, and
open documents located in the file cache.

Acknowledgments
This work was supported in part by the FP7 projects MALCODE
and SysSec, funded by the European Commission under Grant
Agreements No. 254116 and No. 257007, and by the project For-
Too, funded by the Directorate-General for Home Affairs under
Grant Agreement No. HOME/2010/ISEC/AG/INT-002. This
publication reflects the views only of the authors, and the Com-
mission cannot be held responsible for any use which may be made
of the information contained herein. Michalis Polychronakis is
also with FORTH-ICS. Evangelos Ladakis, Giorgos Vasiliadis and
Lazaros Koromilas are also with the University of Crete.

8. REFERENCES
[1] Criminals increase their use of keyloggers, according to

experts. http://antikeyloggers.com/criminals-
increase-use-keyloggers.

[2] KeyGrabber - Hardware Keylogger - WiFi USB
hardware keyloggers. http://www.keelog.com.

[3] KeyGrabber Hardware Keylogger hardware solutions -
KeyGrabber Wi-Fi, KeyGrabber USB hardware
keyloggers. http://www.keydemon.com.

[4] Keylogger reviews, monitor software comparison, test of
best keyloggers 2013. http://www.keylogger.org.

[5] Radeons take back graphics card market share.
http://techreport.com/news/23482/radeons-
take-back-graphics-card-market-share.

[6] Anthony Lineberry. Malicious code injection via
/dev/mem, March 2009. Black Hat.

[7] U. Bayer and F. Nentwich. Anubis: Analyzing Unknown
Binaries, 2009. http://anubis.iseclab.org/.

[8] J. Corbet, A. Rubini, and G. Kroah-Hartman. Linux
Device Drivers, 3rd Edition, chapter 15, pages 413–414.
O’Reilly, February 2005.

[9] J. Duato, A. PeÃśa, F. Silla, R. Mayo, and
E. Quintana-Orti. rcuda: Reducing the number of
gpu-based accelerators in high performance clusters. In
High Performance Computing and Simulation (HPCS),
2010 International Conference on, 2010.

[10] G. Giunta, R. Montella, G. Agrillo, and G. Coviello. A
gpgpu transparent virtualization component for high
performance computing clouds. In Proceedings of the
16th international Euro-Par conference on Parallel
processing: Part I, EuroPar’10, 2010.

[11] V. Gupta, A. Gavrilovska, K. Schwan, H. Kharche,
N. Tolia, V. Talwar, and P. Ranganathan. Gvim:
Gpu-accelerated virtual machines. In Proceedings of the
3rd ACM Workshop on System-level Virtualization for
High Performance Computing, HPCVirt ’09, 2009.

[12] T. Holz, M. Engelberth, and F. Freiling. Learning more
about the underground economy: a case-study of
keyloggers and dropzones. In Proceedings of the 14th
European conference on Research in computer security,
ESORICS’09, 2009.

[13] M. G. Kang, P. Poosankam, and H. Yin. Renovo: a
hidden code extractor for packed executables. In
Proceedings of the 2007 ACM workshop on Recurring
Malcode (WORM), 2007.

[14] D. Kieras. Using the Keystroke-Level Model to Estimate
Execution Times. University of Michigan, 2001.

[15] C. Kruegel, E. Kirda, and U. Bayer. Ttanalyze: A tool
for analyzing malware. In Proceedings of the 15th
European Institute for Computer Antivirus Research
Annual Conference (EICAR), April 2006.

[16] C. Kruegel, W. Robertson, and G. Vigna. Detecting
kernel-level rootkits through binary analysis. In

Proceedings of the Annual Computer Security
Applications Conference (ACSAC), 2006.

[17] D. Le, C. Yue, T. Smart, and H. Wang. Detecting kernel
level keyloggers through dynamic taint analysis.
Technical Report WM-CS-2008-05, College of William &
Mary, 2008.

[18] A. Moser, C. Kruegel, and E. Kirda. Exploring multiple
execution paths for malware analysis. In Proceedings of
the 28th IEEE Symposium on Security and Privacy,
2007.

[19] NVIDIA. Compute Command Line Profiler User Guide,
Version 3.0.

[20] NVIDIA. CUDA C Programming Guide, Version 5.0.
[21] S. Ortolani and B. Crispo. Noisykey: tolerating

keyloggers via keystrokes hiding. In Proceedings of the
7th USENIX conference on Hot Topics in Security,
HotSec’12, 2012.

[22] S. Ortolani, C. Giuffrida, and B. Crispo. Bait your hook:
a novel detection technique for keyloggers. In
Proceedings of the 13th international conference on
Recent advances in intrusion detection, RAID’10, 2010.

[23] B. Prochazka, T. Vojnar, and M. Drahanský. Hijacking
the Linux Kernel. In MEMICS, pages 85–92, 2010.

[24] D. Reynaud. GPU Powered Malware. Ruxcon 2008.
[25] A. Seshadri, M. Luk, N. Qu, and A. Perrig. Secvisor: a

tiny hypervisor to provide lifetime kernel code integrity
for commodity oses. In Proceedings of twenty-first ACM
SIGOPS symposium on Operating systems principles,
SOSP ’07, 2007.

[26] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn,
and P. Khosla. Pioneer: verifying code integrity and
enforcing untampered code execution on legacy systems.
In Proceedings of the twentieth ACM symposium on
Operating systems principles, SOSP ’05, 2005.

[27] M. Sharif, A. Lanzi, J. Giffin, and W. Lee. Automatic
reverse engineering of malware emulators. In Proceedings
of the 30th IEEE Symposium on Security and Privacy,
2009.

[28] S. Shetty. Introduction to spyware keyloggers.
www.securityfocus.com/infocus/1829, 2005.

[29] L. Shi, H. Chen, and J. Sun. vcuda: Gpu accelerated
high performance computing in virtual machines. In
Proceedings of the 2009 IEEE International Symposium
on Parallel&Distributed Processing, IPDPS ’09, 2009.

[30] P. Stewin and I. Bystrov. Understanding DMA Malware.
In Proceedings of the 9th Conference on Detection of
Intrusions and Malware & Vulnerability Assessment.
DIMVA, Heraklion, Crete, Greece, July 2012.

[31] P. Stewin, J.-P. Seifert, and C. Mulliner. Poster:
Towards detecting dma malware. In Proceedings of the
18th ACM conference on Computer and
communications security, CCS ’11, pages 857–860, 2011.

[32] G. Vasiliadis, M. Polychronakis, and S. Ioannidis.
GPU-Assisted Malware. In Proceedings of the 5th
International Conference on Malicious and Unwanted
Software (MALWARE), 2010.

[33] G. Vasiliadis, M. Polychronakis, and S. Ioannidis.
Parallelization and characterization of pattern matching
using GPUs. In Proceedings of the 2011 IEEE
International Symposium on Workload Characterization,
IISWC, 2011.

[34] M. Vlad. Rootkits and Malicious Code Injection.
Journal of Mobile, Embedded and Distributed Systems,
3(2), 2011.

[35] C. Willems, T. Holz, and F. Freiling. Toward automated
dynamic malware analysis using CWSandbox. IEEE
Security and Privacy, 5(2):32–39, 2007.

http://antikeyloggers.com/criminals-increase-use-keyloggers
http://antikeyloggers.com/criminals-increase-use-keyloggers
http://www.keelog.com
http://www.keydemon.com
http://www.keylogger.org
http://techreport.com/news/23482/radeons-take-back-graphics-card-market-share
http://techreport.com/news/23482/radeons-take-back-graphics-card-market-share
http://anubis.iseclab.org/
www.securityfocus.com/infocus/1829

	Introduction
	Background
	GPU-based Keylogging
	Locating the Keyboard Buffer
	Capturing Keystrokes

	Evaluation
	Countermeasures
	GPU Code Analysis
	Runtime Detection

	Discussion
	Conclusion and future work
	References

